上个月学习Peter Shirley-Ray Tracing in One Weekend的系列三本书,收获真的很多。这个系列的书真的是手把手教你如何从零开始构建一个光线跟踪渲染器,对新手(像我)非常友好。但是书中有很多章节需要有一定的数学功底才能看懂,本文想分享一下关于in One Weekend-chapter 8:Metal中一笔带过的折射公式推导,内容主要来自于《Mathematics for 3D Game Programming and Computer Graphics, 3rd Edition》[1],加上我个人的理解,如有错误,欢迎指出。

(配图为raytracer构建后渲染)


问题简述

已知入射向量 \(L\) 和交点法线 \(N\),和入射光线所在介质折射率 \(\eta _ { \mathrm { L } }\) 及折射光线所在介质折射率 \(\eta _ { \mathbf { T } }\) ,求折射向量 \(T\)。如图:

  • 设入射角为 \(\theta _ { \mathrm { L } }\) ,折射角为 \(\theta _ { \mathbf { T } }\)
  • 设 \(L\) 和 \(N\) 已经标准化为单位向量,所求 \(T\) 也为单位向量
  • 注意此处 \(L\) 的方向指向外,保留与书上一致(实际入射方向应为\(-L\))
  • L、T可以理解为light和transmission的缩写

图 1


推导过程

(若推导过程感觉理解困难可以先考虑二维情况再考虑三维,其实入射光线和折射光线都在一个二维平面上)

关键公式:折射定律或斯涅尔定律(Snell's Law),用于计算折射角 \(\theta _ { \mathbf { T } }\) :

推导思路:
将 \(T\) 分解为平行于 \(N\)(-\(N\)) 和垂直于 \(N\) 的向量 (\(-G\)),见图 1。(用这两个向量的线性组合\(a*-N+b*G\)表示 \(T\),问题就在于求两个系数a、b和向量 \(G\),将问题转换为求\(a\)、\(b\)、\(G\))

1. 求 \(a\)

求\(a\)实际上就是求向量\(T\)在向量\(-N\)上的投影,利用点乘公式即可计算出\(a=\cos \theta _ { \mathrm { T } }\),由于所求 \(T\) 和 \(-N\) 都为单位向量,所以其点乘展开式最终化简为\(\cos \theta _ { \mathrm { T } }\)。

\(T \cdot (-N) = |T| |-N| \cos \theta _ { \mathrm { T } }=\cos \theta _ { \mathrm { T } }\)

\(T \cdot (-N) = |-N|\cdotp Proj = Proj\)

联立上式即可

2. 求 \(b\)

基本思路和求 \(a\) 一样,这里求出 \(b = \sin \theta _ { \mathrm { T } }\)

(实际此处先求出的是cos<T,-G>,根据由于垂直关系,两角互余,等值于 \(\sin \theta _ { \mathrm { T } }\) )

3. 求 \(G\)

\(G\) 同 \(\operatorname { perp } _ { \mathrm { N } } \mathbf { L }\)平行(\(\operatorname { perp } _ { \mathrm { N } } \mathbf { L }\)为\(L\)垂直于\(N\)的分量,见图 1),由于 \(L\) 为单位向量,\(\left\| \operatorname { perp } _ { \mathbf { N } } \mathbf { L } \right\| = \sin \theta _ { \mathbf { L } }\),\(G\) 可表示为:

(求 \(\operatorname { perp } _ { \mathrm { N } } \mathbf { L }\) 的过程有点像施密特正交化的过程,都是一个向量去除某个方向的分量,除以 \(\sin \theta _ { \mathbf { L } }\) 即标准化为单位向量)

4. 所以 \(T\) 可以表示为:

利用斯涅尔定律替换\(\frac { \sin \theta _ { \mathrm { T } } } { \sin \theta _ { \mathrm { L } } }\):

将 \(\cos \theta _ { \mathrm { T } }\) 用 \(\sqrt { 1 - \sin ^ { 2 } \theta _ { \mathrm { T } } }\)代替,\(\sin \theta _ { \mathrm { T } }\) 用 \(\left( \eta _ { \mathrm { L } } / \eta _ { \mathrm { T } } \right) \sin \theta _ { \mathrm { L } }\) 代替:

最后,将 \(\sin ^ { 2 } \theta _ { \mathrm { L } }\) 用 \(1 - \cos ^ { 2 } \theta _ { \mathrm { L } } = 1 - ( \mathbf { N } \cdot \mathbf { L } ) ^ { 2 }\) 带入可得最终 \(T\) 的表达式:

(如果 \(\eta _ { \mathbf { L } } > \eta _ { \mathbf { T } }\),方程式中根号内的量可能为负,光线发生全反射,应用反射公式计算向量方向。即当 \(\sin \theta _ { \mathrm { L } } \leq \eta _ { \mathrm { T } } / \eta _ { \mathrm { L } }\),上式才可用于计算折射向量。)

其他

最后放一张in one weekend中计算折射向量的函数,参数 v 即为入射光线方向,只要将上诉公式加以对照即可写出。(记得上述 \(-L=v\))

参考文献

  1. Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics, 3rd Edition. Course Technology PTR, 2011.
  2. Peter Shirley. Ray Tracing in One Weekend. Amazon Digital Services LLC, January 26, 2016.

折射向量计算(Refraction Vector Calculation)的更多相关文章

  1. 【3D数学基础】三维空间折射向量计算

    问题:在三维空间中,已知折射率 e .入射角 L 和法线 N. 要求:计算出折射向量 T. 其中: L. N 和 T 都为单位向量. 如图片所示,下面所有的公式都看着这张图片来求解的: 首先,我们必须 ...

  2. 由浅入深学习PBR的原理和实现

    目录 一. 前言 1.1 本文动机 1.2 PBR知识体系 1.3 本文内容及特点 二. 初阶:PBR基本认知和应用 2.1 PBR的基本介绍 2.1.1 PBR概念 2.1.2 与物理渲染的差别 2 ...

  3. shader函数

    Intrinsic Functions (DirectX HLSL) The following table lists the intrinsic functions available in HL ...

  4. unity shader 常用函数列表

    此篇博客转自csdn的一位大牛. 中间排版出了一些问题 Intrinsic Functions (DirectX HLSL) The following table lists the intrins ...

  5. DirectX HLSL 内置函数

    Intrinsic Functions (DirectX HLSL) The following table lists the intrinsic functions available in HL ...

  6. HLSL Shader编程基础总结

    转自:https://blog.csdn.net/Blues1021/article/details/47093487 基本前提概念 Shader是一种映射到GPU硬件汇编语言上的高级语言,Shade ...

  7. 【SIGGRAPH】用【有说服力的照片真实】技术实现最终幻想15的视觉特效

    原文:西川善司 http://www.4gamer.net/games/075/G007535/20160726064/   最终幻想15的演讲会场.相当大,听众非常多.      在本次计算机图形和 ...

  8. Nvidia Anisotropic Lighting

    http://http.download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/Direct3D9/HLSL_Aniso.zip Anis ...

  9. Nvidia VertexTextureFetch Water

    http://http.download.nvidia.com/developer/SDK/Individual_Samples/samples.html http://http.download.n ...

随机推荐

  1. [NOI 2016]网格

    Description 题库链接 给出一张 \(n\times m\) 的网格,在其中删去 \(c\) 个格子,问至少再删去几个能使得图上存在两点不连通,或输出无解. 多组询问,询问组数 \(T\) ...

  2. django2.1---admin 修改模块的名字为中文显示

    只需要写两个地方 1.应用下的__init__.py default_app_config = 'user.apps.UserConfig' 2.应用下apps.py from django.apps ...

  3. C# Owin初探 概念理解(一)

    本文是阅读网上大牛的文章总结而成. 目录 1.Owin定义 2.为什么要用Owin 3.作用 4.总结 1.Owin定义 Owin是Open Web Interface For .NET.也就是.Ne ...

  4. Java基础——String类(二)

    今天做了几道String常见操作.先来几个代码实例: 例一:此方法,仅把字符串前后出现的空格去掉了,中间部分不会. class TestTrim { public static void main(S ...

  5. 【Java基础】6、java中使用switch-case的用法及注意事项超全总结

    1.switch-case注意事项: switch(A),括号中A的取值只能是整型或者可以转换为整型的数值类型,比如byte.short.int.char.还有枚举:需要强调的是:long和Strin ...

  6. 常见对象(int和String类型的相互转换)

    public class Test03 { //基本数据类型包装类有八种,其中其中都有parsexxx的方法 //可以加将这七种字符串表现形式转换成基本数据类型 //char的包装类Character ...

  7. es7新增的2个特性

  8. 数据库导入导出expdp,impdp

    数据库操作 (1)数据库导入导出expdp,impdp 在导入导出数据库的时候,经常会用到exp和imp,在数据量小的情况下可以随意使用,但是当数据量大,表中数据有百万,千万条的时候,就要等好久好久好 ...

  9. MVC--初步理解(01)

    一.一般意义上的MVC模式 MVC模式(Model-View-Controller)是软件工程中的一种软件架构模式,把软件系统分为以下三个基本部分: 模型(Model):模型用于封装与应用程序的业务逻 ...

  10. Linux 安装mysql,mariadb,mysql主从同步

    myariadb安装 centos7 mariadb的学习 在企业里面,多半不会使用阿里云的mariadb版本,因为版本太低,安全性太低,公司会配置myariadb官方的yum仓库 1.手动创建mar ...