DZY Loves Math(莫比乌斯反演)
\(x=p_1^{\alpha_1}p_2^{\alpha_2}...p_c^{\alpha_c}\)
\(f(x)=\max(\alpha_1,\alpha_2,...,\alpha_c)\)
\(assume\ n\leq m\)
\(\sum_{i=1}^{n}\sum_{j=1}^{m}f(\gcd(i,j))\)
\(\sum_{x=1}^{n}f(x)\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=x]\)
\(\sum_{x=1}^{n}f(x)\sum_{i=1}^{\frac nx}\sum_{j=1}^{\frac mx}[\gcd(i,j)=1]\)
\(\sum_{x=1}^{n}f(x)\sum_{d=1}^{\frac nx}\mu(d)\sum_{i=1}^{\frac nx}\sum_{j=1}^{\frac mx}[d|i,d|j]\)
\(\sum_{x=1}^{n}f(x)\sum_{d=1}^{\frac nx}\mu(d)\lfloor \frac {n}{dx}\rfloor\lfloor \frac {m}{dx}\rfloor\)
\(\sum_{x=1}^{n}f(x)\sum_{x|d}\mu(\frac dx)\lfloor \frac {n}{d}\rfloor\lfloor \frac {m}{d}\rfloor\)
\(\sum_{d=1}^{n}\lfloor \frac {n}{d}\rfloor\lfloor \frac {m}{d}\rfloor\sum_{x|d}f(x)\mu(\frac dx)\)
根据套路,我们到了这个式子。直接暴力调和级数算 \(\sum_{x|d}f(x)\mu(\frac dx)\) 的前缀和,时间复杂度 \(O(n\log n)\)
怎么 \(O(n)\) 筛的锅待填
\(O(n\log n):\)
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=10000000+10;
int n,m,f[maxn],mu[maxn],prim[maxn],vis[maxn],cnt;
ll g[maxn];
inline int read(){
register int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return (f==1)?x:-x;
}
void pre(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){prim[++cnt]=i;mu[i]=-1;}
for(int j=1;i*prim[j]<=n&&j<=cnt;j++){
vis[i*prim[j]]=1;
if(i%prim[j]==0) break;
mu[i*prim[j]]=-mu[i];
}
}
int num,ans;
for(int i=1;i<=cnt;i++){
for(int j=prim[i];j<=n;j+=prim[i]){
num=j;ans=0;
while(num%prim[i]==0) num/=prim[i],ans++;
f[j]=max(f[j],ans);
}
}
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j+=i) g[j]+=f[i]*mu[j/i];
for(int i=1;i<=n;i++) g[i]+=g[i-1];
}
int main()
{
pre(10000000);
int T=read();
while(T--){
n=read(),m=read();
if(n>m) swap(n,m);
ll ans=0;
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(ll)(n/l)*(m/l)*(g[r]-g[l-1]);
}
printf("%lld\n",ans);
}
return 0;
}
\(O(n):\)
#include <bits/stdc++.h>
#define int long long
#define ll long long
using namespace std;
const int maxn=10000000+10;
int n,m,f[maxn],low[maxn],prim[maxn],vis[maxn],cnt;
ll g[maxn];
inline int read(){
register int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return (f==1)?x:-x;
}
void pre(int n){
for(int i=2;i<=n;i++){
if(!vis[i]){low[i]=prim[++cnt]=i;f[i]=g[i]=1;}
for(int j=1;i*prim[j]<=n&&j<=cnt;j++){
vis[i*prim[j]]=1;
if(i%prim[j]==0){
f[i*prim[j]]=f[i]+1;low[i*prim[j]]=low[i]*prim[j];
if(i==low[i]) g[i*prim[j]]=1;
else g[i*prim[j]]=(f[i/low[i]]==f[i*prim[j]])?-g[i/low[i]]:0;
break;
}
f[i*prim[j]]=1;low[i*prim[j]]=prim[j];
g[i*prim[j]]=(f[i]==1)?-g[i]:0;
}
}
for(int i=1;i<=n;i++) g[i]+=g[i-1];
}
signed main()
{
pre(10000000);
int T=read();
while(T--){
n=read(),m=read();
if(n>m) swap(n,m);
ll ans=0;
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(ll)(n/l)*(m/l)*(g[r]-g[l-1]);
}
printf("%lld\n",ans);
}
return 0;
}
DZY Loves Math(莫比乌斯反演)的更多相关文章
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- bzoj 3309 DZY Loves Math 莫比乌斯反演
DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1303 Solved: 819[Submit][Status][Dis ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
- 【BZOJ3309】DZY Loves Math - 莫比乌斯反演
题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...
- 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...
- BZOJ 3309 DZY Loves Math ——莫比乌斯反演
枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
- [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)
$\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...
- bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...
- BZOJ 3309: DZY Loves Math 莫比乌斯反演+打表
有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define se ...
随机推荐
- java ajax请求后台并获取到返回值
js: $.ajax({ url : '../Islogin.do', type : 'get', cache : false, dataType : 'json', success : functi ...
- HXY玩卡片(水题测试2017082401&洛谷2192)
题目链接:HXY玩卡片 很水, 简单讲一下思路. 如果没有0,直接无解,因为不可能是10的倍数. 是9的倍数,则各个数位上的数字和为9的倍数,所以5的数量一定是9的倍数,所以只要尽可能多输出9的倍数个 ...
- c++中的log函数
引入#include<cmath> 以e为底:log(exp(n)) 以10为底:log10(n) 以m为底:log(n)/log(m)
- 爬虫之mongodb数据库
一 mongodb的介绍 1.易用性:mongodb是一款强大.灵活并且易扩展的数据库.他面向于文档的数据库,而不是关系性数据库.不采用关系型主要是为了获得更好的扩展性.还有一个好处就是面向文档的数据 ...
- Codeforces Round #524 (Div. 2) F. Katya and Segments Sets(主席树)
https://codeforces.com/contest/1080/problem/F 题意 有k个区间,区间的种类有n种,有m个询问(n,m<=1e5,k<=3e5),每次询问a,b ...
- CEdit控件[转]
1.CButton.CEdit等从CWnd继承了重要的功能: 使用CWnd::SetWindowText和CWnd::GetWindowText可以设置和获得窗口或控件上的文本.CWnd::SetFo ...
- mysql 入门 jdbc
在java程序中连接mysql,先要到mysql的网站上面去下载驱动,并且安装,默认安装在c盘(我的都是默认安装,目录为C:\Program Files\MySQL\MySQL Connector J ...
- Ubuntu 12.10 安装VirtualBox增强功能
原文链接:http://fengbaoxp.iteye.com/blog/1871825 Ubuntu 12.10 Desktop 首先,通过VirtualBox菜单(设备->安 ...
- 如何比较两个xml 的异同
http://www.xmlunit.org/ <dependency> <groupId>org.xmlunit</groupId> <ar ...
- C++指针一
指针也是变量,占有内存空间,用来保存内存地址. 指针也是一种数据类型,指针是一种数据类型,是指它所致内存空间的数据类型. 指针变量和它指向的内存块是两个不同的概念 *p操作内存 在指针声明时,*号表示 ...