Boke and Tsukkomi

Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 336    Accepted Submission(s): 116

Problem Description
A new season of Touhou M-1 Grand Prix is approaching. Girls in Gensokyo cannot wait for participating it. Before the registration, they have to decide which combination they are going to compete as. Every girl in Gensokyo is both a boke (funny girl) and a tsukkomi (straight girl). Every candidate combination is made up of two girls, a boke and a tsukkomi. A girl may belong to zero or more candidate combinations, but one can only register as a member of one formal combination. The host of Touhou M-1 Grand Prix hopes that as many formal combinations as possible can participate in this year. Under these constraints, some candidate combinations are actually redundant as it\'s impossible to register it as a formal one as long as the number of formal combinations has to be maximized. So they want to figure out these redundant combinations and stop considering about them.
 
Input
There are multiple test cases. Process to the End of File.
The first line of each test case contains two integers: 1 ≤ N ≤ 40 and 1 ≤ M ≤ 123, where N is the number of girls in Gensokyo, and M is the number of candidate combinations. The following M lines are M candidate combinations, one by each line. Each combination is represented by two integers, the index of the boke girl 1 ≤ Bi ≤ N and the index of the tsukkomi girl 1 ≤ Ti ≤ N, where Bi != Ti.
 
Output
For each test case, output the number of redundant combinations in the first line. Then output the space-separated indexes of the redundant combinations in ascending order in the second line.
 
Sample Input
4 4
1 3
2 3
2 4
3 1
6 6
1 2
3 2
3 4
5 2
5 4
5 6
 
Sample Output
1
2
3
2 4 5
 
Author
Zejun Wu (watashi)
 
Source
 
Recommend
zhuyuanchen520
 
 
 
 
 
 
 
 
基本上就是一般图匹配的模板题了。
 
 
先一开始算总的匹配对数为cnt0.
然后枚举每一对匹配,把该对的点去掉,看匹配数是不是小于cnt0-1,是就是多余的。
 
 /* ***********************************************
Author :kuangbin
Created Time :2013/8/23 19:28:08
File Name :F:\2013ACM练习\专题学习\图论\一般图匹配带花树\HDU4687.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
int N; //点的个数,点的编号从1到N
bool Graph[MAXN][MAXN];
int Match[MAXN];
bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN];
int Head,Tail;
int Queue[MAXN];
int Start,Finish;
int NewBase;
int Father[MAXN],Base[MAXN];
int Count;
void Push(int u)
{
Queue[Tail] = u;
Tail++;
InQueue[u] = true;
}
int Pop()
{
int res = Queue[Head];
Head++;
return res;
}
int FindCommonAncestor(int u,int v)
{
memset(InPath,false,sizeof(InPath));
while(true)
{
u = Base[u];
InPath[u] = true;
if(u == Start) break;
u = Father[Match[u]];
}
while(true)
{
v = Base[v];
if(InPath[v])break;
v = Father[Match[v]];
}
return v;
}
void ResetTrace(int u)
{
int v;
while(Base[u] != NewBase)
{
v = Match[u];
InBlossom[Base[u]] = InBlossom[Base[v]] = true;
u = Father[v];
if(Base[u] != NewBase) Father[u] = v;
}
}
void BloosomContract(int u,int v)
{
NewBase = FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u);
ResetTrace(v);
if(Base[u] != NewBase) Father[u] = v;
if(Base[v] != NewBase) Father[v] = u;
for(int tu = ; tu <= N; tu++)
if(InBlossom[Base[tu]])
{
Base[tu] = NewBase;
if(!InQueue[tu]) Push(tu);
}
}
void FindAugmentingPath()
{
memset(InQueue,false,sizeof(InQueue));
memset(Father,,sizeof(Father));
for(int i = ;i <= N;i++)
Base[i] = i;
Head = Tail = ;
Push(Start);
Finish = ;
while(Head < Tail)
{
int u = Pop();
for(int v = ; v <= N; v++)
if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v))
{
if((v == Start) || ((Match[v] > ) && Father[Match[v]] > ))
BloosomContract(u,v);
else if(Father[v] == )
{
Father[v] = u;
if(Match[v] > )
Push(Match[v]);
else
{
Finish = v;
return;
}
}
}
}
}
void AugmentPath()
{
int u,v,w;
u = Finish;
while(u > )
{
v = Father[u];
w = Match[v];
Match[v] = u;
Match[u] = v;
u = w;
}
}
void Edmonds()
{
memset(Match,,sizeof(Match));
for(int u = ; u <= N; u++)
if(Match[u] == )
{
Start = u;
FindAugmentingPath();
if(Finish > )AugmentPath();
}
}
int getMatch()
{
Edmonds();
Count = ;
for(int u = ; u <= N;u++)
if(Match[u] > )
Count++;
return Count/;
} bool g[MAXN][MAXN];
pair<int,int>p[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int m;
while(scanf("%d%d",&N,&m)==)
{
memset(g,false,sizeof(g));
memset(Graph,false,sizeof(Graph));
int u,v;
for(int i = ;i <= m;i++)
{
scanf("%d%d",&u,&v);
p[i] = make_pair(u,v);
g[u][v] = true;
g[v][u] = true;
Graph[u][v] = true;
Graph[v][u] = true;
}
int cnt0 = getMatch();
//cout<<cnt0<<endl;
vector<int>ans;
for(int i = ;i <= m;i++)
{
u = p[i].first;
v = p[i].second;
memcpy(Graph,g,sizeof(g));
for(int j = ;j <= N;j++)
Graph[j][u] = Graph[u][j] = Graph[j][v] = Graph[v][j] = false;
int cnt = getMatch();
//cout<<cnt<<endl;
if(cnt < cnt0-)
ans.push_back(i);
}
int sz = ans.size();
printf("%d\n",sz);
for(int i = ;i < sz;i++)
{
printf("%d",ans[i]);
if(i < sz-)printf(" ");
}
printf("\n");
}
return ;
}
 
 
 
 
 
 
 
 
 
 
 
 

HDU 4687 Boke and Tsukkomi (一般图匹配带花树)的更多相关文章

  1. HDU 4687 Boke and Tsukkomi 一般图匹配,带花树,思路,输出注意空行 难度:4

    http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极 ...

  2. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  3. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  4. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  5. URAL 1099. Work Scheduling (一般图匹配带花树)

    1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...

  6. URAL1099 Work Scheduling —— 一般图匹配带花树

    题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...

  7. URAL1099. Work Scheduling(一般图匹配带花树开花算法)

    1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night gu ...

  8. hdu 4687 Boke and Tsukkomi

    Dancing link twice. Find the maximum combination numbers in the first time. Enumerate each node, dan ...

  9. ZOJ 3316 Game 一般图最大匹配带花树

    一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...

随机推荐

  1. NOIP模拟赛 城市

    题目描述 $ZZQ$ 是一国之主. 这个国家有$N$个城市, 第$i$个城市与第$(i + 1) (mod N)$和$(i - 1) (mod N)$在一个正$N$边形相连. $ZZQ$ 又新建了$N ...

  2. STL中heap相关函数

    heap并不是属于STL中的containers,而是在<algorithm>下提供了相关的函数 make_heap,sort_heap,pop_heap,push_heap 函数的说明: ...

  3. js事件、事件委托

    事件流 事件流:页面中接收事件的顺序: IE的事件流是冒泡流,其他的浏览器是捕获流,如下图: DOM事件流 DOM 事件流同时支持这两种事件流,并且规定DOM任何事件流都包含三个阶段:事件捕获阶段.处 ...

  4. VirtualBox与Genymotion命令行启动

    一.VirtualBox命令行启动 1.添加环境变量: %programfiles%\Oracle\VirtualBox 2.用VBoxManage查看已存在vmname|uuid命令: VBoxMa ...

  5. CentOS7 安装python库(numpy、scipy、matplotlib、scikit-learn、tensorflow)

    0.1准备工作 安装好CentOS7,配置好网络,确保网络畅通. 0.2root授权 首先:当前用户为kaid # vim /etc/sudoers 在root ALL=(ALL) ALL之后添加: ...

  6. linux -j 4

    把源码编译成可执行的二进制文件, 4为服务器内核数

  7. system()函数

    windows下system () 函数详解 windows操作系统下system () 函数详解(主要是在C语言中的应用) 函数名: system   功 能: 发出一个DOS命令   用 法: i ...

  8. 重置HTML标签样式

    ;;} header,footer,section,article,aside,nav,hgroup,address,figure,figcaption,menu,details{display:bl ...

  9. Hadoop案例(六)小文件处理(自定义InputFormat)

    小文件处理(自定义InputFormat) 1.需求分析 无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案.将多个小文件合并 ...

  10. day4 正则表达式(regular)

    正则(regular),要使用正则表达式需要导入Python中的re(regular正则的缩写)模块.正则表达式是对字符串的处理,我们知道,字符串中有时候包含很多我们想要提取的信息,掌握这些处理字符串 ...