Boke and Tsukkomi

Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 336    Accepted Submission(s): 116

Problem Description
A new season of Touhou M-1 Grand Prix is approaching. Girls in Gensokyo cannot wait for participating it. Before the registration, they have to decide which combination they are going to compete as. Every girl in Gensokyo is both a boke (funny girl) and a tsukkomi (straight girl). Every candidate combination is made up of two girls, a boke and a tsukkomi. A girl may belong to zero or more candidate combinations, but one can only register as a member of one formal combination. The host of Touhou M-1 Grand Prix hopes that as many formal combinations as possible can participate in this year. Under these constraints, some candidate combinations are actually redundant as it\'s impossible to register it as a formal one as long as the number of formal combinations has to be maximized. So they want to figure out these redundant combinations and stop considering about them.
 
Input
There are multiple test cases. Process to the End of File.
The first line of each test case contains two integers: 1 ≤ N ≤ 40 and 1 ≤ M ≤ 123, where N is the number of girls in Gensokyo, and M is the number of candidate combinations. The following M lines are M candidate combinations, one by each line. Each combination is represented by two integers, the index of the boke girl 1 ≤ Bi ≤ N and the index of the tsukkomi girl 1 ≤ Ti ≤ N, where Bi != Ti.
 
Output
For each test case, output the number of redundant combinations in the first line. Then output the space-separated indexes of the redundant combinations in ascending order in the second line.
 
Sample Input
4 4
1 3
2 3
2 4
3 1
6 6
1 2
3 2
3 4
5 2
5 4
5 6
 
Sample Output
1
2
3
2 4 5
 
Author
Zejun Wu (watashi)
 
Source
 
Recommend
zhuyuanchen520
 
 
 
 
 
 
 
 
基本上就是一般图匹配的模板题了。
 
 
先一开始算总的匹配对数为cnt0.
然后枚举每一对匹配,把该对的点去掉,看匹配数是不是小于cnt0-1,是就是多余的。
 
 /* ***********************************************
Author :kuangbin
Created Time :2013/8/23 19:28:08
File Name :F:\2013ACM练习\专题学习\图论\一般图匹配带花树\HDU4687.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
int N; //点的个数,点的编号从1到N
bool Graph[MAXN][MAXN];
int Match[MAXN];
bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN];
int Head,Tail;
int Queue[MAXN];
int Start,Finish;
int NewBase;
int Father[MAXN],Base[MAXN];
int Count;
void Push(int u)
{
Queue[Tail] = u;
Tail++;
InQueue[u] = true;
}
int Pop()
{
int res = Queue[Head];
Head++;
return res;
}
int FindCommonAncestor(int u,int v)
{
memset(InPath,false,sizeof(InPath));
while(true)
{
u = Base[u];
InPath[u] = true;
if(u == Start) break;
u = Father[Match[u]];
}
while(true)
{
v = Base[v];
if(InPath[v])break;
v = Father[Match[v]];
}
return v;
}
void ResetTrace(int u)
{
int v;
while(Base[u] != NewBase)
{
v = Match[u];
InBlossom[Base[u]] = InBlossom[Base[v]] = true;
u = Father[v];
if(Base[u] != NewBase) Father[u] = v;
}
}
void BloosomContract(int u,int v)
{
NewBase = FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u);
ResetTrace(v);
if(Base[u] != NewBase) Father[u] = v;
if(Base[v] != NewBase) Father[v] = u;
for(int tu = ; tu <= N; tu++)
if(InBlossom[Base[tu]])
{
Base[tu] = NewBase;
if(!InQueue[tu]) Push(tu);
}
}
void FindAugmentingPath()
{
memset(InQueue,false,sizeof(InQueue));
memset(Father,,sizeof(Father));
for(int i = ;i <= N;i++)
Base[i] = i;
Head = Tail = ;
Push(Start);
Finish = ;
while(Head < Tail)
{
int u = Pop();
for(int v = ; v <= N; v++)
if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v))
{
if((v == Start) || ((Match[v] > ) && Father[Match[v]] > ))
BloosomContract(u,v);
else if(Father[v] == )
{
Father[v] = u;
if(Match[v] > )
Push(Match[v]);
else
{
Finish = v;
return;
}
}
}
}
}
void AugmentPath()
{
int u,v,w;
u = Finish;
while(u > )
{
v = Father[u];
w = Match[v];
Match[v] = u;
Match[u] = v;
u = w;
}
}
void Edmonds()
{
memset(Match,,sizeof(Match));
for(int u = ; u <= N; u++)
if(Match[u] == )
{
Start = u;
FindAugmentingPath();
if(Finish > )AugmentPath();
}
}
int getMatch()
{
Edmonds();
Count = ;
for(int u = ; u <= N;u++)
if(Match[u] > )
Count++;
return Count/;
} bool g[MAXN][MAXN];
pair<int,int>p[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int m;
while(scanf("%d%d",&N,&m)==)
{
memset(g,false,sizeof(g));
memset(Graph,false,sizeof(Graph));
int u,v;
for(int i = ;i <= m;i++)
{
scanf("%d%d",&u,&v);
p[i] = make_pair(u,v);
g[u][v] = true;
g[v][u] = true;
Graph[u][v] = true;
Graph[v][u] = true;
}
int cnt0 = getMatch();
//cout<<cnt0<<endl;
vector<int>ans;
for(int i = ;i <= m;i++)
{
u = p[i].first;
v = p[i].second;
memcpy(Graph,g,sizeof(g));
for(int j = ;j <= N;j++)
Graph[j][u] = Graph[u][j] = Graph[j][v] = Graph[v][j] = false;
int cnt = getMatch();
//cout<<cnt<<endl;
if(cnt < cnt0-)
ans.push_back(i);
}
int sz = ans.size();
printf("%d\n",sz);
for(int i = ;i < sz;i++)
{
printf("%d",ans[i]);
if(i < sz-)printf(" ");
}
printf("\n");
}
return ;
}
 
 
 
 
 
 
 
 
 
 
 
 

HDU 4687 Boke and Tsukkomi (一般图匹配带花树)的更多相关文章

  1. HDU 4687 Boke and Tsukkomi 一般图匹配,带花树,思路,输出注意空行 难度:4

    http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极 ...

  2. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  3. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  4. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  5. URAL 1099. Work Scheduling (一般图匹配带花树)

    1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...

  6. URAL1099 Work Scheduling —— 一般图匹配带花树

    题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...

  7. URAL1099. Work Scheduling(一般图匹配带花树开花算法)

    1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night gu ...

  8. hdu 4687 Boke and Tsukkomi

    Dancing link twice. Find the maximum combination numbers in the first time. Enumerate each node, dan ...

  9. ZOJ 3316 Game 一般图最大匹配带花树

    一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...

随机推荐

  1. 一起来学redis(一)

    redis是一个开源的,高性能的,基于键值对的缓存与存储系统通过提供多种键值数据类型来适应不同场景下的缓存与存储需求. 同时redis的诸多高层级功能使其可以胜任消息队列,任务队列等不同的角色. 特性 ...

  2. WebClient vs HttpClient vs HttpWebRequest

    转载:http://www.diogonunes.com/blog/webclient-vs-httpclient-vs-httpwebrequest/ Just when I was startin ...

  3. [转载]锁无关的数据结构与Hazard指针——操纵有限的资源

    Lock-Free Data Structures with Hazard Pointers 锁无关的数据结构与Hazard指针----操纵有限的资源 By Andrei Alexandrescu a ...

  4. 在Mac上搭建Python虚拟环境

    安装 virtualenv $ sudo pip install virtualenv 然后建立一个测试目录: $ mkdir testvirtual $ cd testvirtual 就可以成功创建 ...

  5. freemarker模板引擎的使用

    freemarker是一套前端模板引擎,在使用时,要先在web项目中添加freemarker.jar的依赖. 我在这里主要演示spring-mvc整合freemarker模板引擎.项目案例的文件包结构 ...

  6. nginx 查看当前的连接数

    netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a,S[a]}' https://www.cnblogs.com/lianzhil ...

  7. 交通运输线(LCA)

    题目大意: 战后有很多城市被严重破坏,我们需要重建城市.然而,有些建设材料只能在某些地方产生.因此,我们必须通过城市交通,来运送这些材料的城市.由于大部分道路已经在战争期间完全遭到破坏,可能有两个城市 ...

  8. python类的继承和多态

    现在属于是老年人的脑子,东西写着写着就忘了,东西记着记着就不知道了.之前学C++的时候就把类.对象这块弄得乱七八糟,现在是因为很想玩python,所以就看看python的类和对象. 就像说的,类有三个 ...

  9. DNS之XX记录

    DNS服务器里有两个比较重要的记录.一个叫SOA记录(起始授权机构) 一个叫NS(Name Server)记录(域名服务器)关于这两个记录,很多文章都有解释,但是很多人还是很糊涂.我现在通俗的解释一下 ...

  10. hive的窗口函数ntile、row_number、rank

    一.ntile 序列函数不支持window子句 数据准备: cookie1,--, cookie1,--, cookie1,--, cookie1,--, cookie1,--, cookie1,-- ...