Boke and Tsukkomi

Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 336    Accepted Submission(s): 116

Problem Description
A new season of Touhou M-1 Grand Prix is approaching. Girls in Gensokyo cannot wait for participating it. Before the registration, they have to decide which combination they are going to compete as. Every girl in Gensokyo is both a boke (funny girl) and a tsukkomi (straight girl). Every candidate combination is made up of two girls, a boke and a tsukkomi. A girl may belong to zero or more candidate combinations, but one can only register as a member of one formal combination. The host of Touhou M-1 Grand Prix hopes that as many formal combinations as possible can participate in this year. Under these constraints, some candidate combinations are actually redundant as it\'s impossible to register it as a formal one as long as the number of formal combinations has to be maximized. So they want to figure out these redundant combinations and stop considering about them.
 
Input
There are multiple test cases. Process to the End of File.
The first line of each test case contains two integers: 1 ≤ N ≤ 40 and 1 ≤ M ≤ 123, where N is the number of girls in Gensokyo, and M is the number of candidate combinations. The following M lines are M candidate combinations, one by each line. Each combination is represented by two integers, the index of the boke girl 1 ≤ Bi ≤ N and the index of the tsukkomi girl 1 ≤ Ti ≤ N, where Bi != Ti.
 
Output
For each test case, output the number of redundant combinations in the first line. Then output the space-separated indexes of the redundant combinations in ascending order in the second line.
 
Sample Input
4 4
1 3
2 3
2 4
3 1
6 6
1 2
3 2
3 4
5 2
5 4
5 6
 
Sample Output
1
2
3
2 4 5
 
Author
Zejun Wu (watashi)
 
Source
 
Recommend
zhuyuanchen520
 
 
 
 
 
 
 
 
基本上就是一般图匹配的模板题了。
 
 
先一开始算总的匹配对数为cnt0.
然后枚举每一对匹配,把该对的点去掉,看匹配数是不是小于cnt0-1,是就是多余的。
 
 /* ***********************************************
Author :kuangbin
Created Time :2013/8/23 19:28:08
File Name :F:\2013ACM练习\专题学习\图论\一般图匹配带花树\HDU4687.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
int N; //点的个数,点的编号从1到N
bool Graph[MAXN][MAXN];
int Match[MAXN];
bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN];
int Head,Tail;
int Queue[MAXN];
int Start,Finish;
int NewBase;
int Father[MAXN],Base[MAXN];
int Count;
void Push(int u)
{
Queue[Tail] = u;
Tail++;
InQueue[u] = true;
}
int Pop()
{
int res = Queue[Head];
Head++;
return res;
}
int FindCommonAncestor(int u,int v)
{
memset(InPath,false,sizeof(InPath));
while(true)
{
u = Base[u];
InPath[u] = true;
if(u == Start) break;
u = Father[Match[u]];
}
while(true)
{
v = Base[v];
if(InPath[v])break;
v = Father[Match[v]];
}
return v;
}
void ResetTrace(int u)
{
int v;
while(Base[u] != NewBase)
{
v = Match[u];
InBlossom[Base[u]] = InBlossom[Base[v]] = true;
u = Father[v];
if(Base[u] != NewBase) Father[u] = v;
}
}
void BloosomContract(int u,int v)
{
NewBase = FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u);
ResetTrace(v);
if(Base[u] != NewBase) Father[u] = v;
if(Base[v] != NewBase) Father[v] = u;
for(int tu = ; tu <= N; tu++)
if(InBlossom[Base[tu]])
{
Base[tu] = NewBase;
if(!InQueue[tu]) Push(tu);
}
}
void FindAugmentingPath()
{
memset(InQueue,false,sizeof(InQueue));
memset(Father,,sizeof(Father));
for(int i = ;i <= N;i++)
Base[i] = i;
Head = Tail = ;
Push(Start);
Finish = ;
while(Head < Tail)
{
int u = Pop();
for(int v = ; v <= N; v++)
if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v))
{
if((v == Start) || ((Match[v] > ) && Father[Match[v]] > ))
BloosomContract(u,v);
else if(Father[v] == )
{
Father[v] = u;
if(Match[v] > )
Push(Match[v]);
else
{
Finish = v;
return;
}
}
}
}
}
void AugmentPath()
{
int u,v,w;
u = Finish;
while(u > )
{
v = Father[u];
w = Match[v];
Match[v] = u;
Match[u] = v;
u = w;
}
}
void Edmonds()
{
memset(Match,,sizeof(Match));
for(int u = ; u <= N; u++)
if(Match[u] == )
{
Start = u;
FindAugmentingPath();
if(Finish > )AugmentPath();
}
}
int getMatch()
{
Edmonds();
Count = ;
for(int u = ; u <= N;u++)
if(Match[u] > )
Count++;
return Count/;
} bool g[MAXN][MAXN];
pair<int,int>p[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int m;
while(scanf("%d%d",&N,&m)==)
{
memset(g,false,sizeof(g));
memset(Graph,false,sizeof(Graph));
int u,v;
for(int i = ;i <= m;i++)
{
scanf("%d%d",&u,&v);
p[i] = make_pair(u,v);
g[u][v] = true;
g[v][u] = true;
Graph[u][v] = true;
Graph[v][u] = true;
}
int cnt0 = getMatch();
//cout<<cnt0<<endl;
vector<int>ans;
for(int i = ;i <= m;i++)
{
u = p[i].first;
v = p[i].second;
memcpy(Graph,g,sizeof(g));
for(int j = ;j <= N;j++)
Graph[j][u] = Graph[u][j] = Graph[j][v] = Graph[v][j] = false;
int cnt = getMatch();
//cout<<cnt<<endl;
if(cnt < cnt0-)
ans.push_back(i);
}
int sz = ans.size();
printf("%d\n",sz);
for(int i = ;i < sz;i++)
{
printf("%d",ans[i]);
if(i < sz-)printf(" ");
}
printf("\n");
}
return ;
}
 
 
 
 
 
 
 
 
 
 
 
 

HDU 4687 Boke and Tsukkomi (一般图匹配带花树)的更多相关文章

  1. HDU 4687 Boke and Tsukkomi 一般图匹配,带花树,思路,输出注意空行 难度:4

    http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极 ...

  2. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  3. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  4. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  5. URAL 1099. Work Scheduling (一般图匹配带花树)

    1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...

  6. URAL1099 Work Scheduling —— 一般图匹配带花树

    题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...

  7. URAL1099. Work Scheduling(一般图匹配带花树开花算法)

    1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night gu ...

  8. hdu 4687 Boke and Tsukkomi

    Dancing link twice. Find the maximum combination numbers in the first time. Enumerate each node, dan ...

  9. ZOJ 3316 Game 一般图最大匹配带花树

    一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...

随机推荐

  1. PHP缓存加速插件 XCache 、 ZendOpcache 安装

    PHP缓存原理 当客户端请求一个PHP程序时,服务器的PHP引擎会解析该PHP程序,并将其编译为特定的操作码(OperateCode,简称opcode)文件,该文件是PHP代码的一种二进制表示方式.默 ...

  2. 模块定义文件.def

    一作用 DLL中导出函数的声明有两种方式:一种为在函数声明中加上__declspec(dllexport),这里不再举例说明:另外一种方式是采用模块定义(.def) 文件声明,.def文件为链接器提供 ...

  3. HDU 3746 Cyclic Nacklace(KMP找循环节)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2087 题目大意:给你一个字符串,求出将字符串的最少出现两次循环节需要添加的字符数. 解题思路: 这题需 ...

  4. 20165301 预备作业二:学习基础和C语言基础调查

    <做中学>读后感及C语言学习调查 读<做中学>有感 娄老师在文章中多次提到「做中学(Learning By Doing)」的概念,并通过娄老师自己的减肥经历.五笔练习经历.乒乓 ...

  5. Django的自带认证系统——auth模块

    Django自带的用户认证 auth模块 from django.contrib import auth 备注:使用auth模块时,我们默认使用Django提供的auth_user表,创建数据时,可以 ...

  6. Binary Tree Zigzag Level Order Traversal——关于广度优先的经典面试题

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

  7. 783. Minimum Distance Between BST Nodes

    Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the ...

  8. 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物

    T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...

  9. QString 乱谈(3)-Qt5与中文

    原文请看:http://blog.csdn.net/dbzhang800/article/details/7542672 两个月前,简单写过QTextCodec中的setCodecForTr等终于消失 ...

  10. 导出php5.4支持的数组格式,即以[]为标识符而不是以array()标识

    //导出php数组,以[]为标识符而不是以array() if (!function_exists('varExport')) { //导出php数组,以[]为标识符而不是以array() funct ...