Boke and Tsukkomi

Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 336    Accepted Submission(s): 116

Problem Description
A new season of Touhou M-1 Grand Prix is approaching. Girls in Gensokyo cannot wait for participating it. Before the registration, they have to decide which combination they are going to compete as. Every girl in Gensokyo is both a boke (funny girl) and a tsukkomi (straight girl). Every candidate combination is made up of two girls, a boke and a tsukkomi. A girl may belong to zero or more candidate combinations, but one can only register as a member of one formal combination. The host of Touhou M-1 Grand Prix hopes that as many formal combinations as possible can participate in this year. Under these constraints, some candidate combinations are actually redundant as it\'s impossible to register it as a formal one as long as the number of formal combinations has to be maximized. So they want to figure out these redundant combinations and stop considering about them.
 
Input
There are multiple test cases. Process to the End of File.
The first line of each test case contains two integers: 1 ≤ N ≤ 40 and 1 ≤ M ≤ 123, where N is the number of girls in Gensokyo, and M is the number of candidate combinations. The following M lines are M candidate combinations, one by each line. Each combination is represented by two integers, the index of the boke girl 1 ≤ Bi ≤ N and the index of the tsukkomi girl 1 ≤ Ti ≤ N, where Bi != Ti.
 
Output
For each test case, output the number of redundant combinations in the first line. Then output the space-separated indexes of the redundant combinations in ascending order in the second line.
 
Sample Input
4 4
1 3
2 3
2 4
3 1
6 6
1 2
3 2
3 4
5 2
5 4
5 6
 
Sample Output
1
2
3
2 4 5
 
Author
Zejun Wu (watashi)
 
Source
 
Recommend
zhuyuanchen520
 
 
 
 
 
 
 
 
基本上就是一般图匹配的模板题了。
 
 
先一开始算总的匹配对数为cnt0.
然后枚举每一对匹配,把该对的点去掉,看匹配数是不是小于cnt0-1,是就是多余的。
 
 /* ***********************************************
Author :kuangbin
Created Time :2013/8/23 19:28:08
File Name :F:\2013ACM练习\专题学习\图论\一般图匹配带花树\HDU4687.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
int N; //点的个数,点的编号从1到N
bool Graph[MAXN][MAXN];
int Match[MAXN];
bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN];
int Head,Tail;
int Queue[MAXN];
int Start,Finish;
int NewBase;
int Father[MAXN],Base[MAXN];
int Count;
void Push(int u)
{
Queue[Tail] = u;
Tail++;
InQueue[u] = true;
}
int Pop()
{
int res = Queue[Head];
Head++;
return res;
}
int FindCommonAncestor(int u,int v)
{
memset(InPath,false,sizeof(InPath));
while(true)
{
u = Base[u];
InPath[u] = true;
if(u == Start) break;
u = Father[Match[u]];
}
while(true)
{
v = Base[v];
if(InPath[v])break;
v = Father[Match[v]];
}
return v;
}
void ResetTrace(int u)
{
int v;
while(Base[u] != NewBase)
{
v = Match[u];
InBlossom[Base[u]] = InBlossom[Base[v]] = true;
u = Father[v];
if(Base[u] != NewBase) Father[u] = v;
}
}
void BloosomContract(int u,int v)
{
NewBase = FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u);
ResetTrace(v);
if(Base[u] != NewBase) Father[u] = v;
if(Base[v] != NewBase) Father[v] = u;
for(int tu = ; tu <= N; tu++)
if(InBlossom[Base[tu]])
{
Base[tu] = NewBase;
if(!InQueue[tu]) Push(tu);
}
}
void FindAugmentingPath()
{
memset(InQueue,false,sizeof(InQueue));
memset(Father,,sizeof(Father));
for(int i = ;i <= N;i++)
Base[i] = i;
Head = Tail = ;
Push(Start);
Finish = ;
while(Head < Tail)
{
int u = Pop();
for(int v = ; v <= N; v++)
if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v))
{
if((v == Start) || ((Match[v] > ) && Father[Match[v]] > ))
BloosomContract(u,v);
else if(Father[v] == )
{
Father[v] = u;
if(Match[v] > )
Push(Match[v]);
else
{
Finish = v;
return;
}
}
}
}
}
void AugmentPath()
{
int u,v,w;
u = Finish;
while(u > )
{
v = Father[u];
w = Match[v];
Match[v] = u;
Match[u] = v;
u = w;
}
}
void Edmonds()
{
memset(Match,,sizeof(Match));
for(int u = ; u <= N; u++)
if(Match[u] == )
{
Start = u;
FindAugmentingPath();
if(Finish > )AugmentPath();
}
}
int getMatch()
{
Edmonds();
Count = ;
for(int u = ; u <= N;u++)
if(Match[u] > )
Count++;
return Count/;
} bool g[MAXN][MAXN];
pair<int,int>p[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int m;
while(scanf("%d%d",&N,&m)==)
{
memset(g,false,sizeof(g));
memset(Graph,false,sizeof(Graph));
int u,v;
for(int i = ;i <= m;i++)
{
scanf("%d%d",&u,&v);
p[i] = make_pair(u,v);
g[u][v] = true;
g[v][u] = true;
Graph[u][v] = true;
Graph[v][u] = true;
}
int cnt0 = getMatch();
//cout<<cnt0<<endl;
vector<int>ans;
for(int i = ;i <= m;i++)
{
u = p[i].first;
v = p[i].second;
memcpy(Graph,g,sizeof(g));
for(int j = ;j <= N;j++)
Graph[j][u] = Graph[u][j] = Graph[j][v] = Graph[v][j] = false;
int cnt = getMatch();
//cout<<cnt<<endl;
if(cnt < cnt0-)
ans.push_back(i);
}
int sz = ans.size();
printf("%d\n",sz);
for(int i = ;i < sz;i++)
{
printf("%d",ans[i]);
if(i < sz-)printf(" ");
}
printf("\n");
}
return ;
}
 
 
 
 
 
 
 
 
 
 
 
 

HDU 4687 Boke and Tsukkomi (一般图匹配带花树)的更多相关文章

  1. HDU 4687 Boke and Tsukkomi 一般图匹配,带花树,思路,输出注意空行 难度:4

    http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极 ...

  2. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  3. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  4. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  5. URAL 1099. Work Scheduling (一般图匹配带花树)

    1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...

  6. URAL1099 Work Scheduling —— 一般图匹配带花树

    题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...

  7. URAL1099. Work Scheduling(一般图匹配带花树开花算法)

    1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night gu ...

  8. hdu 4687 Boke and Tsukkomi

    Dancing link twice. Find the maximum combination numbers in the first time. Enumerate each node, dan ...

  9. ZOJ 3316 Game 一般图最大匹配带花树

    一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...

随机推荐

  1. hashCode()与equals()区别

    这两个方法均是超类Object自带的成员方法.Object类是所有Java类的祖先.每个类都使用 Object 作为超类.所有对象(包括数组)都实现这个类的方法.在不明确给出超类的情况下,Java会自 ...

  2. SLD 官方实例

    基于xml标准的sld格式: <?xml version="1.0" encoding="UTF-8"?> <StyledLayerDescr ...

  3. css绘制图标

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xht ...

  4. HDU 3085 Nightmare Ⅱ(双向BFS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3085 题目大意:给你一张n*m地图上,上面有有 ‘. ’:路 ‘X':墙 ’Z':鬼,每秒移动2步,可 ...

  5. ConcurrentMap

    ConcurrentMap接口下有两个重要的实现: ConcurrentHashMap ConcurrentSkipListMap(支持并发排序功能,弥补ConcurrentHashMap) Conc ...

  6. fastdfs5.10 centos6.9 安装配置

    下载相关软件 https://codeload.github.com/happyfish100/fastdfs/tar.gz/V5.10http://download.csdn.net/detail/ ...

  7. C# asp.net 实现导出Excel

    原文地址:传送门 这段时间用到了导出Excel的功能,这个功能还是比较常用的,我常用的有两个方法,现在整理一下,方便以后查看. 1.实现DataTable数据导出到本地,需要自己传进去导出的路径. / ...

  8. 【原创】Scrapyd 的 .net 客户端

    最近项目需要部署Scrapy爬虫,采用最简单的Scrapyd服务进行部署,基于.net core 进行了客户端的封装. 1)Scrapyd API文档:http://scrapyd.readthedo ...

  9. 错误:Could not create the Android package. See the Output (Build) window for more details

    错误:Could not create the Android package. See the Output (Build) window for more details. Mono For An ...

  10. Android之 ListView(1)

    ListView是Android中最常用的控件之一. 当有太多数据需要显示的时候,ListView就派上用场了.它允许用户通过滑动手指的方式,将数据滑入滑出界面. 一.最简单的ListView实现 1 ...