bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
很明显最后的结果应该是一个斜率递增的结果,那么我们先按斜率排序,然后用单调栈维护,如果要加入的线i和last-1的交点在i和last的左侧,就证明last这条线已经完全被覆盖了,那么从栈中删除,直接维护下去就得到 了结果,注意一下斜率相同的情况
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct line{
double k,b;
int id;
bool operator<(const line &rhs)const{
if(k!=rhs.k)return k<rhs.k;
return b<rhs.b;
}
}l[N];
bool cmp(int a,int b)
{
return l[a].id<l[b].id;
}
int q[N];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%lf%lf",&l[i].k,&l[i].b);
l[i].id=i+;
}
sort(l,l+n);
// for(int i=0;i<n;i++)printf("%f %f\n",l[i].k,l[i].b);
int head=,last=;q[head]=;
for(int i=;i<n;i++)
{
if(head<=last&&l[q[last]].k==l[i].k)last--;
while(head<last)
{
double x=(l[i].b-l[q[last-]].b)/(l[q[last-]].k-l[i].k);
double y=l[i].k*x+l[i].b;
double x1=(l[q[last]].b-l[q[last-]].b)/(l[q[last-]].k-l[q[last]].k);
double y1=l[q[last]].k*x+l[q[last]].b;
// printf("%f %f %f %f\n",l[i].k,l[i].b,l[q[last-1]].k,l[q[last-1]].b);
if(x<=x1)last--;
else break;
}
q[++last]=i;
// for(int j=head;j<=last;j++)printf("%d ",q[j]);
// puts("+++");
}
sort(q+head,q+last+,cmp);
for(int i=head;i<=last;i++)printf("%d ",l[q[i]].id);
return ;
}
/********************
7
-1 0
1 0
0 0
0 -1
0 -2
-1 -1
1 -1
********************/
bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳的更多相关文章
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- [HNOI2008]水平可见直线 单调栈
题目描述:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...
- bzoj1007/luogu3194 水平可见直线 (单调栈)
先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉. 然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边 ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
随机推荐
- robotFramework_ride_python2_Wxpython测试环境搭建
(提示:我的安装版本是robotFramework3.0+ride1.5+python2.7+wxpython2.8,至于wxpython3.0下ride安装打不开的问题我还没找到原因,建议刚开始先不 ...
- 如何看MFC程序
一直以来 我都一个疑惑 如果看懂别人的MFC 程序. 今日忽然略有小悟. Q:MFC是啥? A:MFC是类库.. ************* Q :MFC 啥玩意类库? A;MFC 是封装API的类 ...
- POJ - 2699 The Maximum Number of Strong Kings (最大流+枚举)
题意:有n(n<=10)个选手,两两之间打比赛,共有n*(n-1)/2场比赛,赢一场得1分.给出每个人最后的得分.求有多少个定义如下的strong king:赢了所有得分比自己高的人或本身就是分 ...
- 带你走进ajax(2)
ajax原理介绍 传统的web应用 传统的web应用是客户端向服务器发送一个http请求后,客户端要一直等待服务器的响应,这时用户什么事也干不成. 最麻烦的是对于表单的提交.比如用户要填写用户信息,等 ...
- Twitter的分布式自增ID算法snowflake
snowflake 分布式场景下获取自增id git:https://github.com/twitter/snowflake 解读: http://www.cnblogs.com/relucent/ ...
- python 实现3-2 问候语: 继续使用练习 3-1 中的列表,但不打印每个朋友的姓名,而为每人打印一条消息。每条消息都包含相同的问候语,但抬头为相应朋友的姓名。
names = ['linda', 'battile', 'emly'] print(names[0].title() + " " + "good moning!&quo ...
- 负载均衡技术在CDN中发挥着重要作用
转载地址:http://www.qicaispace.com/gonggao/server/page01/info07.asp CDN是一个经策略性部署的整体系统,能够帮助用户解决分布式存储.负载均衡 ...
- Python面试题之Python中__repr__和__str__区别
看下面的例子就明白了 class Test(object): def __init__(self, value='hello, world!'): self.data = value >> ...
- CSS 图像拼合技术
CSS 图像拼合技术 一.图像拼合 图像拼合就是单个图像的集合. 有许多图像的网页可能需要很长的时间来加载和生成多个服务器的请求. 使用图像拼合会降低服务器的请求数量,并节省带宽. 二.图像拼合 - ...
- Zabbix 触发器函数方法整理
函数介绍 abschange 参数:忽略 支持类型:float,int,str,text,log 作用:返回最近获得的值与之前获得值差的绝对值,对于字符串类型:0表示相等,1表示不同 avg 参数:秒 ...