【bzoj4894】天赋 矩阵树定理
题目描述
输入
输出
第一行一个整数,问题所求的方案数。
样例输入
8
01111111
00101001
01010111
01001111
01110101
01110011
01111100
01110110
样例输出
72373
题解
矩阵树定理
读明白题以后发现求的就是外向树形图的个数,于是使用矩阵树定理解决。
与求生成树个数不同的是,外向树形图用的矩阵是 入度矩阵-邻接矩阵 ,并且删去的一行一列不能随便选择,必须是根所在的那一行那一列。
然后高斯消元求一下行列式的值即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 310
#define mod 1000000007
using namespace std;
typedef long long ll;
ll a[N][N];
char str[N];
inline ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int n , i , j , k , d = 0;
ll t , ans = 1;
scanf("%d" , &n);
for(i = 0 ; i < n ; i ++ )
{
scanf("%s" , str);
for(j = 0 ; j < n ; j ++ )
if(str[j] == '1')
a[j][j] ++ , a[i][j] -- ;
}
for(i = 1 ; i < n ; i ++ )
{
for(j = i ; j < n ; j ++ )
if(a[j][i])
break;
if(j >= n) continue;
if(j != i)
for(d ^= 1 , k = i ; k < n ; k ++ )
swap(a[i][k] , a[j][k]);
ans = ans * a[i][i] % mod;
for(t = pow(a[i][i] , mod - 2) , j = i ; j < n ; j ++ ) a[i][j] = a[i][j] * t % mod;
for(j = i + 1 ; j < n ; j ++ )
for(t = a[j][i] , k = i ; k < n ; k ++ )
a[j][k] = (a[j][k] - a[i][k] * t % mod + mod) % mod;
}
for(i = 1 ; i < n ; i ++ ) ans = ans * a[i][i] % mod;
if(d) ans = (mod - ans) % mod;
printf("%lld\n" , ans);
return 0;
}
【bzoj4894】天赋 矩阵树定理的更多相关文章
- BZOJ4894:天赋(矩阵树定理)
Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的. 也就是说,有一些天赋必须是要在 ...
- 【BZOJ4894】天赋(矩阵树定理)
[BZOJ4894]天赋(矩阵树定理) 题面 BZOJ Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有 一些天赋必须是要有 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)
[LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...
- 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)
传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...
- [CF917D]Stranger Trees[矩阵树定理+解线性方程组]
题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...
随机推荐
- tomcat日志切割脚本
tomcat日志每俩小时切割的脚本如下(这是用定时任务来完成的,此方法无需重启tomcat): time=$(date +%H) end_time=`` a=$end_time BF_TIME=$(- ...
- tp5.0初入
1.目录结构 |-application 应用目录 是整个网站的核心 |---|---index 前台目录 |---|-----|---controller 控制器 |---|-----|---mod ...
- <Docker学习>2.Centos7安装docker
Docker CE 支持 64 位版本 CentOS 7,并且要求内核版本不低于 3.10. CentOS 7 满足最低内核的要求,但由于内核版本比较低,部分功能(如 overlay2 存储层驱动)无 ...
- MLT教程:从BXL文件导入Altium Designer原理图封装和PCB封装
在TI官网的封装文件中提供弄BXL文件可以导出Altium Designer的封装库和原理图库. 这个界面往下面拉会看到: 然后可以下载各种封装的bxl文件了.下面视频说明bxl文件如何导出成功. 如 ...
- http与www服务精解
TCP/IP 协议介绍 在介绍 HTTP 协议之前,先简单说一下TCP/IP协议的相关内容.TCP/IP协议是分层的,从底层至应用层分别为:物理层.链路层.网络层.传输层和应用层,如下图所示: 从应用 ...
- 通过IIS共享文件夹来实现静态资源"本地分布式"部署
以下以文件型数据库(如sqlite)为例 楼主话:以下内容,若有不专业处,大胆喷,虚心求教. 起因:要进行一个项目的分布式部署,而这个项目所涉及的其中一个数据库为sqlite(经测试,同为文件型数据库 ...
- 原理剖析-Netty之服务端启动工作原理分析(下)
一.大致介绍 1.由于篇幅过长难以发布,所以本章节接着上一节来的,上一章节为[原理剖析(第 010 篇)Netty之服务端启动工作原理分析(上)]: 2.那么本章节就继续分析Netty的服务端启动,分 ...
- Hadoop2.8.0 源码编译
一.下载源码并解压 二.检查以下几项 必须有网络!!! JDK 1.7+ 安装方法 java -version Maven 3.0 or later 安装方法 mvn -version Findbug ...
- 关于android 5.0报错:dlopen failed: couldn't map ... Permission denied
问题描述: 我的应用当中集成了一个安全相关的sdk,而这个sdk中使用的so是加过壳的. 它加载native so的方式是:Java System.loadLibrary --> native ...
- leetcode 【 Linked List Swap Nodes in Pairs 】 python 实现
题目: Swap Nodes in Pairs Given a linked list, swap every two adjacent nodes and return its head. For ...