埃及分数问题_迭代加深搜索_C++
一、题目背景
http://codevs.cn/problem/1288/
给出一个真分数,求用最少的1/a形式的分数表示出这个真分数,在数量相同的情况下保证最小的分数最大,且每个分数不同。
如 19/45=1/3 + 1/12 + 1/180
二、迭代加深搜索
迭代加深搜索可以看做带深度限制的DFS。
首先设置一个搜索深度,然后进行DFS,当目前深度达到限制深度后验证当前方案的合理性,更新答案。
不断调整搜索深度,直到找到最优解。
三、埃及分数具体实现
我们用dep限制搜索层数,先从2开始,每次深度+1
搜索时每一层比上一层的分数小,即分母一次比一次大
每次枚举出 1/a 后,用当前分数减去,然后递归传递剩余的分数
每层搜索枚举的限制条件:
1、保证当前深度分母大于上一深度分母
2、枚举的1/a小于当前分数,不可能存在等于的状态,因为此种最优解会在限制深度较小的时候出现
3、设当前剩余分数为x/y,剩余深度为d,则 x/y<d/a → a<d/x*y。
不妨先设之后枚举的分母都为 a,那么最后也就刚好达到 x/y ,但又因分数不能相等,所以 a 必须小于该值,即把分数调大。如果分数很小,那么就永远够不着目标分数
当深度达到限制深度时,只需判断剩余的分数是否满足1/a的形式,然后更新结果
记得开long long ,使用%lld输出,因为通分的时候数据会很大
时间复杂度和搜索大致一致,因为当前限制深度的时间复杂度远大于上一次限制深度的时间复杂度,所以之前深度的时间可以忽略
优点是空间开支特别小
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#define N 1000
using namespace std; long long ans[N],s[N],mo,ch;
int dep;
long long gcd(long long a,long long b){return b==?a:gcd(b,a%b);}
void outp()
{
int i;
if (ans[dep]>s[dep])
{
for (i=;i<=dep;i++)
{
ans[i]=s[i];
}
}
}
void dfs(long long x,long long y,int d)
{
long long a,b,i,w;
if (d==dep)
{
s[d]=y;
if ((x==)&&(s[d]>s[d-])) outp();
return;
}
for (i=max(s[d-]+,y/x+);i<(dep-d+)*y/x;i++)
{
b=y*i/gcd(y,i);
a=b/y*x-b/i;
w=gcd(a,b);
a/=w;
b/=w;
s[d]=i;
dfs(a,b,d+);
}
}
int main()
{
int i=,j;
scanf("%lld%lld",&ch,&mo);
i=gcd(ch,mo);
ch/=i;
mo/=i;
for (dep=;;dep++)
{
ans[]=;
s[]=;
ans[dep]=;
dfs(ch,mo,);
if (ans[]!=) break;
}
for (j=;j<=dep;j++)
{
printf("%lld ",ans[j]);
}
printf("\n");
return ;
}
版权所有,转载请联系作者,违者必究
QQ:740929894
埃及分数问题_迭代加深搜索_C++的更多相关文章
- vijos1308 埃及分数(迭代加深搜索)
题目链接:点击打开链接 题目描写叙述: 在古埃及.人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数.如:2/3=1/2+1/6,但不同意2/3=1/3+1/3,由于加数中有同样的.对于 ...
- UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)
UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...
- 埃及分数 迭代加深搜索 IDA*
迭代加深搜索 IDA* 首先枚举当前选择的分数个数上限maxd,进行迭代加深 之后进行估价,假设当前分数之和为a,目标分数为b,当前考虑分数为1/c,那么如果1/c×(maxd - d)< a ...
- [Vijos1308]埃及分数(迭代加深搜索 + 剪枝)
传送门 迭代加深搜索是必须的,先枚举加数个数 然后搜索分母 这里有一个强大的剪枝,就是确定分母的范围 #include <cstdio> #include <cstring> ...
- POJ1129Channel Allocation[迭代加深搜索 四色定理]
Channel Allocation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14601 Accepted: 74 ...
- BZOJ1085: [SCOI2005]骑士精神 [迭代加深搜索 IDA*]
1085: [SCOI2005]骑士精神 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1800 Solved: 984[Submit][Statu ...
- 迭代加深搜索 POJ 1129 Channel Allocation
POJ 1129 Channel Allocation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14191 Acc ...
- 迭代加深搜索 codevs 2541 幂运算
codevs 2541 幂运算 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 从m开始,我们只需要6次运算就可以计算出 ...
- HDU 1560 DNA sequence (IDA* 迭代加深 搜索)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1560 BFS题解:http://www.cnblogs.com/crazyapple/p/321810 ...
随机推荐
- PHP 7.1版本 微信安全模式消息接受
token 验证就不多讲了 重点说一下PHP7.1版本的加密解密算法 php7.1发布后新特性吸引了不少PHPer,大家都在讨论新特性带来的好处与便利. 但是从php7.0 升级到 php7.1 废弃 ...
- ### Cause: java.lang.reflect.UndeclaredThrowableException
### Cause: java.lang.reflect.UndeclaredThrowableException Caused by: org.apache.ibatis.exceptions.Pe ...
- strchr函数的用法
原型: char *strchr(const char *s,char c); #include<string.h> 查找字符串s中首次出现字符c的位置,返回首次出现c的位置的指针,如果s ...
- Snowflake Snow Snowflakes【Poj3349】
Description You may have heard that no two snowflakes are alike. Your task is to write a program to ...
- 常用 Git 命令清单【转--阮一峰】
常用 Git 命令清单 感谢作者 --> 原文链接 我每天使用 Git ,但是很多命令记不住. 一般来说,日常使用只要记住下图6个命令,就可以了.但是熟练使用,恐怕要记住60-100个命令. 下 ...
- 20145202马超《Java程序设计》第十周学习总结
一.网络编程 1.网络概述 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定的位置,或者接收到指定的数据,这个就是狭义的网络编程范畴.在发送和接收数据 ...
- PHP.TP框架下商品项目的优化4-优化商品添加表单js
优化商品添加表单js 思路 1.制作五个按钮 2.下面五个table 3.全部隐藏,点击则显示 4.点击第几个按钮就显示第几个table 具体操作 1.添加按钮 2.添加五个table并添加class ...
- 关于RTKLIB资料整理和学习
最近要做一个关于rtk的项目,采用rtklib源码基础上进行移植,由于我在嵌入式方面和rtk方面都是小白,所以无论是嵌入式通信还是rtk都得从头学起.嵌入式方面打算用stm32进行移植,现在已经基本掌 ...
- 利用split方法计算字符串中出现字母最多的次数
最近练习一些简单的算法题,知道自己很不聪明,但却没想到用了这么久,划算不划算是个需要考虑的问题, 其中有个算法是:统计一个字符串出现最多的字母,网上很多自己的见解,但是才疏学浅,有些地方看的有点困难, ...
- javascript类式继承模式#4——共享原型
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...