归并排序,时间复杂度nlogn
/*
考点:
1. 快慢指针;2. 归并排序。
此题经典,需要消化吸收。
复杂度分析:
T(n) 拆分 n/2, 归并 n/2 ,一共是n/2 + n/2 = n
/ \ 以下依此类推:
T(n/2) T(n/2) 一共是 n/2*2 = n
/ \ / \
T(n/4) ........... 一共是 n/4*4 = n
一共有logn层,故复杂度是 O(nlogn)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
class Solution { public : ListNode* findMiddle(ListNode* head){ ListNode* chaser = head; ListNode* runner = head->next; while (runner != NULL && runner->next != NULL){ chaser = chaser->next; runner = runner->next->next; } return chaser; } ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) { if (l1 == NULL){ return l2; } if (l2 == NULL){ return l1; } ListNode* dummy = new ListNode(0); ListNode* head = dummy; while (l1 != NULL && l2 != NULL){ if (l1->val > l2->val){ head->next = l2; l2 = l2->next; } else { head->next = l1; l1 = l1->next; } head = head->next; } if (l1 == NULL){ head ->next = l2; } if (l2 == NULL){ head->next = l1; } return dummy->next; } ListNode* sortList(ListNode* head) { if (head == NULL || head ->next == NULL){ return head; } ListNode* middle = findMiddle(head); ListNode* right = sortList(middle->next); middle -> next = NULL; ListNode* left = sortList(head); return mergeTwoLists(left, right); } };
|
归并排序,时间复杂度nlogn的更多相关文章
- 快速排序的时间复杂度nlogn是如何推导的??
本文以快速排序为例,推导了快排的时间复杂度nlogn是如何得来的,其它算法与其类似. 对数据Data = { x1, x2... xn }: T(n)是QuickSort(n)消耗的时间: P(n)是 ...
- 归并排序O(nlogn)
先分治再合并 代码 #include<bits/stdc++.h> using namespace std; #define ll long long int a[1000],t[1000 ...
- 平均时间复杂度为O(nlogn)的排序算法
本文包括 1.快速排序 2.归并排序 3.堆排序 1.快速排序 快速排序的基本思想是:采取分而治之的思想,把大的拆分为小的,每一趟排序,把比选定值小的数字放在它的左边,比它大的值放在右边:重复以上步骤 ...
- 快排的时间复杂度O(n) = nlogn计算过程
转载:https://www.cnblogs.com/javawebsoa/p/3194015.html 本文以快速排序为例,推导了快排的时间复杂度nlogn是如何得来的,其它算法与其类似. 对数据D ...
- java泛型中使用的排序算法——归并排序及分析
一.引言 我们知道,java中泛型排序使用归并排序或TimSort.归并排序以O(NlogN)最坏时间运行,下面我们分析归并排序过程及分析证明时间复杂度:也会简述为什么java选择归并排序作为泛型的排 ...
- 快速排序 O(n logn) 堆排序 O(n logn) 归并排序 O(n logn)
NB三人组 快速排序 思路" 取一个元素P (第一个元素), 使元素归位 列表被P 分成两部分,左边都比P小,右边比P大; 递归完成排序. 问题 如果是已经排序好的 倒叙 列表 则会 递归深 ...
- 快速排序 Vs. 归并排序 Vs. 堆排序——谁才是最强的排序算法
知乎上有一个问题是这样的: 堆排序是渐进最优的比较排序算法,达到了O(nlgn)这一下界,而快排有一定的可能性会产生最坏划分,时间复杂度可能为O(n^2),那为什么快排在实际使用中通常优于堆排序? 昨 ...
- 归并排序(归并排序求逆序对数)--16--归并排序--Leetcode面试题51.数组中的逆序对
面试题51. 数组中的逆序对 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 示例 1: 输入: [7,5,6,4] 输出 ...
- 处理海量数据的高级排序之——归并排序(C++)
代码实现 ...
随机推荐
- batchsize对收敛速度的影响
想象一下,当mini-batch 是真个数据集的时候,是不是就退化成了 Gradient Descent,这样的话,反而收敛速度慢.你忽略了batch 增大导致的计算 batch 代价变大的问题.如果 ...
- solver
slover中有type,用于优化算法的选择,有6种: Stochastic Gradient Descent (type: “SGD”), AdaDelta (type: “AdaDelta”), ...
- Java获取yml里面的配置
#yml文件配置systemPath: #档案系统地址 dossier: http://127.0.0.1:8088/ //调用说明 配置文件里必须包含节点 否则项目无法启动 @Value(" ...
- 用户价值模型 CITE :https://www.jianshu.com/p/34199b13ffbc
RFM用户价值模型的原理和应用 ▌定义 在众多的用户价值分析模型中,RFM模型是被广泛被应用的:RFM模型是衡量客户价值和客户创利能力的重要工具和手段,在RFM模式中,R(Recency)表示客户购 ...
- MySQL索引类型及优化
索引是快速搜索的关键.MySQL索引的建立对于MySQL的高效运行是很重要的.下面介绍几种常见的MySQL索引类型. 在数据库表中,对字段建立索引可以大大提高查询速度.假如我们创建了一个 mytabl ...
- UIPopoverController
if (popOver == nil) { popOver = [[UIPopoverController alloc] initWithContentViewController:viewVC]; ...
- IOS使用Jenkins进行持续集成
本文主要讲述在开发过程中,提高工作效率而进行的IOS-Jenkins的持续集成. 背景 平时我们开发完成IOS项目,需要打包给测试人员进行测试.其中的过程需要重复进行:修改配置项--编译---连接设备 ...
- React组件自适应窗口宽高
很多时候我们需要组件能够根据窗口变化改变宽高,有时候可以使用css,有时候需要随数据调整则使用js计算. 比如说,当我们在页面中放置一个iframe时,我们希望它的宽高随着其父元素or窗口的变化而变化 ...
- 数据结构算法与应用c++语言描述 原书第二版 答案(更新中
目录 第一章 C++回顾 函数与参数 1.交换两个整数的不正确代码. 异常 10.抛出并捕捉整型异常. 第一章 C++回顾 函数与参数 1.交换两个整数的不正确代码. //test_1 void sw ...
- NodeJS基础入门-fs文件系统
文件I/O是由简单封装的标准POSIX函数提供.通过require('fs') 使用该模块.所有的方法都有异步和同步的形式. 异步方法的最后一个参数都是一个回调函数.传给回调函数的参数取决于具体方法, ...