归并排序,时间复杂度nlogn
/* 考点: 1. 快慢指针;2. 归并排序。 此题经典,需要消化吸收。 复杂度分析: T(n) 拆分 n/2, 归并 n/2 ,一共是n/2 + n/2 = n / \ 以下依此类推: T(n/2) T(n/2) 一共是 n/2*2 = n / \ / \ T(n/4) ........... 一共是 n/4*4 = n 一共有logn层,故复杂度是 O(nlogn)|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
class Solution {public: ListNode* findMiddle(ListNode* head){ ListNode* chaser = head; ListNode* runner = head->next; while(runner != NULL && runner->next != NULL){ chaser = chaser->next; runner = runner->next->next; } return chaser; } ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) { if(l1 == NULL){ return l2; } if(l2 == NULL){ return l1; } ListNode* dummy = new ListNode(0); ListNode* head = dummy; while(l1 != NULL && l2 != NULL){ if(l1->val > l2->val){ head->next = l2; l2 = l2->next; } else{ head->next = l1; l1 = l1->next; } head = head->next; } if(l1 == NULL){ head ->next = l2; } if(l2 == NULL){ head->next = l1; } return dummy->next; } ListNode* sortList(ListNode* head) { if(head == NULL || head ->next == NULL){ return head; } ListNode* middle = findMiddle(head); ListNode* right = sortList(middle->next); middle -> next = NULL; ListNode* left = sortList(head); return mergeTwoLists(left, right); }};
|
归并排序,时间复杂度nlogn的更多相关文章
- 快速排序的时间复杂度nlogn是如何推导的??
本文以快速排序为例,推导了快排的时间复杂度nlogn是如何得来的,其它算法与其类似. 对数据Data = { x1, x2... xn }: T(n)是QuickSort(n)消耗的时间: P(n)是 ...
- 归并排序O(nlogn)
先分治再合并 代码 #include<bits/stdc++.h> using namespace std; #define ll long long int a[1000],t[1000 ...
- 平均时间复杂度为O(nlogn)的排序算法
本文包括 1.快速排序 2.归并排序 3.堆排序 1.快速排序 快速排序的基本思想是:采取分而治之的思想,把大的拆分为小的,每一趟排序,把比选定值小的数字放在它的左边,比它大的值放在右边:重复以上步骤 ...
- 快排的时间复杂度O(n) = nlogn计算过程
转载:https://www.cnblogs.com/javawebsoa/p/3194015.html 本文以快速排序为例,推导了快排的时间复杂度nlogn是如何得来的,其它算法与其类似. 对数据D ...
- java泛型中使用的排序算法——归并排序及分析
一.引言 我们知道,java中泛型排序使用归并排序或TimSort.归并排序以O(NlogN)最坏时间运行,下面我们分析归并排序过程及分析证明时间复杂度:也会简述为什么java选择归并排序作为泛型的排 ...
- 快速排序 O(n logn) 堆排序 O(n logn) 归并排序 O(n logn)
NB三人组 快速排序 思路" 取一个元素P (第一个元素), 使元素归位 列表被P 分成两部分,左边都比P小,右边比P大; 递归完成排序. 问题 如果是已经排序好的 倒叙 列表 则会 递归深 ...
- 快速排序 Vs. 归并排序 Vs. 堆排序——谁才是最强的排序算法
知乎上有一个问题是这样的: 堆排序是渐进最优的比较排序算法,达到了O(nlgn)这一下界,而快排有一定的可能性会产生最坏划分,时间复杂度可能为O(n^2),那为什么快排在实际使用中通常优于堆排序? 昨 ...
- 归并排序(归并排序求逆序对数)--16--归并排序--Leetcode面试题51.数组中的逆序对
面试题51. 数组中的逆序对 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 示例 1: 输入: [7,5,6,4] 输出 ...
- 处理海量数据的高级排序之——归并排序(C++)
代码实现 ...
随机推荐
- 七、vue中将token存到cookie
使用js-cookie工具: 1.npm i js-cookie //安装2.import Cookies from 'js-cookie' //引用 // 存入cookie:Cookies.set( ...
- js 去除数组中的空值以及数组判断是否有重复数据
1.判断是否有重复数据 function isRepeat(array){ var hash = {}; for(var i in array) { if(array[i]!="" ...
- python_105_类的特殊成员方法
aa.py class C(): def __init__(self): self.name='QiZhiguang' 类的特殊成员方法: # 1. __doc__ 表示类的描述信息 class Do ...
- MAC OSXU盘会挂载目录
当U盘接到系统后,你可以在Terminal里输入df -lh.这时,硬盘的使用和分区情况会输出,你在Mounted on 这一列数据中可以找到你的U盘或新添加的硬盘的挂载路径.
- javaweb基础(17)_jsp九个内置对象
一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...
- SDWebImage解析
SDWebImage托管在github上.https://github.com/rs/SDWebImage 这个类库提供一个UIImageView类别以支持加载来自网络的远程图片.具有缓存管理.异步下 ...
- module.exports exports 和export export default
首先可以知道的是这是两组不同模块规范. module.exports 是CommonJS模块规范,通过require 导入 a.js: var x = 'hello' module.exports.x ...
- ubuntu 16.04 + 中文输入法
在桌面右上角设置图标中找到"System Setting",双击打开. 在打开的窗口里找到"Language Support",双击打开. 可能打开会说没有安装 ...
- linux关于软件安装和测试
软件都是盘上的安装之前确保已挂载完毕 1.安装软件 rpm -ivh httpd-2* 2.修改配置文件 vi /etc/httpd/conf/httpd.conf listen 8888 3 ...
- nodejs开发过程中遇到的一些插件记录
1.chalk Github:https://github.com/chalk/chalk 终端样式定制插件,可自定义输出日志的样式. 1.semver 管网:https://semver.o ...