传送门

题目要求求:

\[\sum_{i=1}^nlcm(i,n)
\]

先转化成gcd处理:

\[n\sum_{i=1}^n\frac{i}{gcd(i,j)}
\]

之后老套路 枚举gcd,并且先把d除进去之后用\(i\)代替\(\frac{i}{d}\)

\[n \sum_{d|n}i\sum_{i=1}^{\frac{n}{d}}[gcd(i,\frac{n}{d})=1]
\]

这时候发现 后面那一项其实是要求求在\(\frac{n}{d}\)以内所有与其互质的数的和。因为当\(gcd(d,i) = 1\)时,\(gcd(d-i,i) = 1\),所以这样的数一定是成对出现,有\(\frac{1}{2}\varphi(n)\)对,所以就可以计算这个值。注意当n=1的时候,这个值是1.所以要在后面加上1.

我们现在要求的就是

\[n\sum_{d|n}\frac{\frac{n}{d}\varphi(\frac{n}{d})}{2} + n
\]

这玩意咋求呢……?我们首先线性把欧拉函数筛出来,之后虽然他有枚举因子的循环,但实际上我们也这么操作,他每次做的操作次数之和其实是一个调和级数(很像埃氏筛法),是\(O(nlogn)\)的。所以直接这样先预处理出来,之后询问的时候\(O(1)\)出结果即可。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n')
#define fr friend inline
#define y1 poj
#define mp make_pair
#define pr pair<int,int>
#define fi first
#define sc second
#define pb push_back
#define I puts("bug") using namespace std;
typedef long long ll;
const int M = 1000005;
const int INF = 1000000009;
const double eps = 1e-7;
const double pi = acos(-1);
const ll mod = 1e9+7; ll read()
{
ll ans = 0,op = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
return ans * op;
} int T,n,p[M],phi[M],tot;
bool np[M];
ll ans[M]; void euler()
{
np[1] = 1,phi[1] = 1;
rep(i,2,M-2)
{
if(!np[i]) p[++tot] = i,phi[i] = i-1;
for(int j = 1;i * p[j] <= M-2;j++)
{
np[i * p[j]] = 1;
if(i % p[j] == 0) {phi[i * p[j]] = phi[i] * p[j];break;}
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
rep(i,1,M-2)
for(int j = 1;j * i <= M-2;j++) ans[i * j] += (ll)i * phi[i] / 2;
rep(i,1,M-2) ans[i] = (ll)ans[i] * i + i;
} int main()
{
euler();
T = read();
while(T--) n = read(),printf("%lld\n",ans[n]);
return 0;
}

疯狂LCM的更多相关文章

  1. P1891 疯狂LCM

    \(\color{#0066ff}{ 题目描述 }\) 众所周知,czmppppp是数学大神犇.一天,他给众蒟蒻们出了一道数论题,蒟蒻们都惊呆了... 给定正整数N,求LCM(1,N)+LCM(2,N ...

  2. luogu1891 疯狂lcm ??欧拉反演?

    link 给定正整数N,求LCM(1,N)+LCM(2,N)+...+LCM(N,N). 多组询问,1≤T≤300000,1≤N≤1000000 \(\sum_{i=1}^nlcm(i,n)\) \( ...

  3. 洛谷 - P1891 - 疯狂LCM - 线性筛

    另一道数据范围不一样的题:https://www.cnblogs.com/Yinku/p/10987912.html $F(n)=\sum\limits_{i=1}^{n} lcm(i,n) $ $\ ...

  4. 题解:洛谷P1891 疯狂LCM

    原题链接 题目描述 描述: 众所周知,czmppppp是数学大神犇.一天,他给众蒟蒻们出了一道数论题,蒟蒻们都惊呆了... 给定正整数N,求LCM(1,N)+LCM(2,N)+...+LCM(N,N) ...

  5. 洛咕 【P1891】疯狂LCM & 三倍经验

    经验给掉先: 经验*1 经验*2 经验*3 这里给个跑得比较慢的 \(n \sqrt n\) 预处理然后 \(O(1)\) 回答询问的做法 式子 首先我们推柿子: \[\begin{aligned}A ...

  6. 洛谷 P1891 疯狂LCM 题解

    原题链接 享受推式子的乐趣吧 数论真有趣! 庆祝:数论紫题第 \(3\) 道. \[\sum_{i=1}^n \operatorname{lcm}(i,n) \] \[= \sum_{i=1}^n \ ...

  7. luogu P1891 疯狂LCM

    嘟嘟嘟 这题跟上一道题有点像,但是我还是没推出来--菜啊 \[\begin{align*} ans &= \sum_{i = 1} ^ {n} \frac{i * n}{gcd(i, n)} ...

  8. [Luogu1891]疯狂LCM[辗转相减法]

    题意 多组询问,每次给定 \(n\) ,求:\(\sum_{i=1}^nlcm(i,n)\) . \(\rm T \leq 3\times 10^4\ ,n \leq 10^6\). 分析 推式子: ...

  9. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

随机推荐

  1. Swagger学习和实践

    Swagger学习和实践 学习了:https://www.cnblogs.com/zxtceq/p/5530396.html swagger 英 [ˈswægə(r)] 美 [ˈswæɡɚ] vi.昂 ...

  2. make mrproper及mrproper的含义

    Linux下面去编译项目之前,一般常会用make mrproper去先删除之前编译所生成的文件和配置文件,备份文件等,其中,mrproper和distclean,clean之间的区别,Linux内核源 ...

  3. vue项目结构设计

    感觉这个写的挺详细的,要详细了解可以看这个→ 结构详细介绍 vue项目结构图: 简单介绍: build目录是一些webpack的文件,配置参数什么的,一般不用动 config是vue项目的基本配置文件 ...

  4. C# winform ListView 的右键菜单的下级菜单的选项视情况禁用方法

    ListView 和右键菜单例如以下图: 要实现功能是: 1.用户状态为[活动]时,改动用户状态为[活动]禁用,反之则反. 2.而且仅仅实用户状态为[非活动]时,[删除学员用户]才是可用状态. 功能非 ...

  5. nvidia-docker_1.0.1-1_amd64.deb 百度云下载分享

    nvidia-docker_1.0.1-1_amd64.deb 链接: https://pan.baidu.com/s/1i5pHFNZ 密码: xjui

  6. Sass编译css/Grunt压缩文件

    Sass安装(mac) $ sudo gem install sass scss编译成css文件 $ sass ui.scss ui.css CLI安装 $ npm install -g grunt- ...

  7. java操作redis学习(一):安装及连接

    文章参考自:http://www.cnblogs.com/edisonfeng/p/3571870.html,在此基础上进行了修改. 一.下载安装Redis redis官网显示暂时不支持Windows ...

  8. Struts2中的OGNL表达式

    一.OGNL表达式简介 OGNL是Object Graphic Navigation Language(对象图导航语言)的缩写,它是一个开源项目.所谓对象图,即以任意一个对象为根,通过OGNL可以访问 ...

  9. libcurl理解和使用

    1 libcurl是一个很好的客户端库 2 CURLOPT_URL 就是普通的url. 3 CURLOPT_HTTPHEADER 3.1 http get 4 CURLOPT_WRITEFUNCTIO ...

  10. tornado安全应用之用户认证

    在这个例子中,我们将只通过存储在安全cookie里的用户名标识一个人.当某人首次在某个浏览器(或cookie过期后)访问我们的页面时,我们展示一个登录表单页面.表单作为到LoginHandler路由的 ...