Jugs
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4280   Accepted: 2533   Special Judge

Description

In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were confronted with the following puzzle. They were given a 3-gallon jug and a 5-gallon jug and were asked to fill the 5-gallon jug with exactly 4 gallons. This problem generalizes that puzzle.

You have two jugs, A and B, and an infinite supply of water. There are three types of actions that you can use: (1) you can fill a jug, (2) you can empty a jug, and (3) you can pour from one jug to the other. Pouring from one jug to the other stops when the first jug is empty or the second jug is full, whichever comes first. For example, if A has 5 gallons and B has 6 gallons and a capacity of 8, then pouring from A to B leaves B full and 3 gallons in A.

A problem is given by a triple (Ca,Cb,N), where Ca and Cb are the capacities of the jugs A and B, respectively, and N is the goal. A solution is a sequence of steps that leaves exactly N gallons in jug B. The possible steps are

fill A 
fill B 
empty A 
empty B 
pour A B 
pour B A 
success

where "pour A B" means "pour the contents of jug A into jug B", and "success" means that the goal has been accomplished.

You may assume that the input you are given does have a solution.

Input

Input to your program consists of a series of input lines each defining one puzzle. Input for each puzzle is a single line of three positive integers: Ca, Cb, and N. Ca and Cb are the capacities of jugs A and B, and N is the goal. You can assume 0 < Ca <= Cb and N <= Cb <=1000 and that A and B are relatively prime to one another.

Output

Output from your program will consist of a series of instructions from the list of the potential output lines which will result in either of the jugs containing exactly N gallons of water. The last line of output for each puzzle should be the line "success". Output lines start in column 1 and there should be no empty lines nor any trailing spaces.

Sample Input

3 5 4
5 7 3

Sample Output

fill B
pour B A
empty A
pour B A
fill B
pour B A
success
fill A
pour A B
fill A
pour A B
empty B
pour A B
success
解题方法:类似于三个水杯倒水问题,用广搜。
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std; typedef struct cup
{
int a;
int b;
int pre;
int step;
}Cup; Cup Queue[];
int nCount = ; void PrintStep(int step)
{
switch(step)
{
case :
printf("fill A\n");
break;
case :
printf("fill B\n");
break;
case :
printf("empty A\n");
break;
case :
printf("empty B\n");
break;
case :
printf("pour A B\n");
break;
case :
printf("pour B A\n");
break;
}
} void Print(int front)
{
int k = front, j;
for (;;)
{
j = k;
k = Queue[k].pre;
if (Queue[j].pre == -)
{
Queue[j].pre = -;
break;
}
else
{
Queue[j].pre = -;
}
}
for (int i = ; i <= nCount; i++)
{
if (Queue[i].pre == -)
{
PrintStep(Queue[i].step);
}
}
printf("success\n");
} bool IsExit(int a, int b)
{
for (int i = ; i <= nCount; i++)
{
if (Queue[i].a == a && Queue[i].b == b)
{
return true;
}
}
return false;
} void BFS(int va, int vb, int result)
{
if (va == result)
{
printf("fill A\nsuccess\n");
return;
}
if (vb == result)
{
printf("fill B\nsuccess\n");
return;
}
int front = -;
int rear = -;
memset(Queue, , sizeof(Queue));
++nCount;
Queue[++rear].pre = -;
Queue[rear].a = va;
Queue[rear].b = ;
Queue[rear].step = ;
++nCount;
Queue[++rear].pre = -;
Queue[rear].a = ;
Queue[rear].b = vb;
Queue[rear].step = ;
int a, b;
while(front <= rear)
{
int cura = Queue[++front].a;
int curb = Queue[front].b;
if (cura == result || curb == result)
{
Print(front);
return;
}
if (cura > )
{
if (cura + curb > vb)
{
a = cura + curb - vb;
b = vb;
if (!IsExit(a, b))
{
Queue[++rear].a = a;
Queue[rear].b = b;
Queue[rear].pre = front;
Queue[rear].step = ;
++nCount;
}
}
else
{
a = ;
b = cura + curb;
if (!IsExit(a, b))
{
Queue[++rear].a = a;
Queue[rear].b = b;
Queue[rear].pre = front;
Queue[rear].step = ;
++nCount;
}
}
a = ;
b = curb;
if (!IsExit(a, b))
{
Queue[++rear].a = a;
Queue[rear].b = b;
Queue[rear].pre = front;
Queue[rear].step = ;
++nCount;
}
}
a = va;
b = curb;
if (!IsExit(a, b))
{
Queue[++rear].a = a;
Queue[rear].b = b;
Queue[rear].pre = front;
Queue[rear].step = ;
++nCount;
}
if (curb > )
{
if (cura + curb > va)
{
a = va;
b = cura + curb - va;
if (!IsExit(a, b))
{
Queue[++rear].a = a;
Queue[rear].b = b;
Queue[rear].pre = front;
Queue[rear].step = ;
++nCount;
}
}
else
{
a = cura + curb;
b = ;
if (!IsExit(a, b))
{
Queue[++rear].a = a;
Queue[rear].b = b;
Queue[rear].pre = front;
Queue[rear].step = ;
++nCount;
}
}
a = cura;
b = ;
if (!IsExit(a, b))
{
Queue[++rear].a = a;
Queue[rear].b = b;
Queue[rear].pre = front;
Queue[rear].step = ;
++nCount;
}
}
a = cura;
b = vb;
if (!IsExit(a, b))
{
Queue[++rear].a = a;
Queue[rear].b = b;
Queue[rear].pre = front;
Queue[rear].step = ;
++nCount;
}
}
} int main()
{
int va, vb, result;
while(scanf("%d%d%d", &va, &vb, &result) != EOF)
{
nCount = -;
memset(Queue, , sizeof(Queue));
BFS(va, vb, result);
}
return ;
}

POJ 1606 Jugs的更多相关文章

  1. [POJ] 1606 Jugs(BFS+路径输出)

    题目地址:http://poj.org/problem?id=1606 广度优先搜索的经典问题,倒水问题.算法不需要多说,直接BFS,路径输出采用递归.最后注意是Special Judge #incl ...

  2. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  3. poj1066 Jugs

    poj1066 Jugs http://poj.org/problem?id=1606 解题思路:本题可以用数学方法解得,最易理解,常规的解法是搜索.直接用接近模拟的广度优先搜索即可过. 给两个容器, ...

  4. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  5. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  6. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  7. poj 题目分类(1)

    poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...

  8. POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)

    本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...

  9. POJ题目分类(转)

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

随机推荐

  1. cookie和session基础以及在Django中应用

    看了会视频,终于搞懂了~ 1.cookie cookie:保存状态 cookie的工作原理是:由服务器产生内容,浏览器收到请求后保存在本地:当浏览器再次访问时,浏览器会自动带上cookie,这样服务器 ...

  2. 【Android】SlidingMenu属性详解

    SlidingMenu 常用属性介绍: menu.setMode(SlidingMenu.LEFT);//设置左滑菜单menu.setTouchModeAbove(SlidingMenu.TOUCHM ...

  3. (转)UVM挑战及概述

    UVM的调度也具有其独特的挑战,尤其是在调试的领域.其中的一些挑战如下: 1. Phase的管理:objections and synchronization 2. 线程调试 3. Tracing i ...

  4. 我的CentOS6.5下及windows7下 安装composer与Yii2的过程

    用yii2以来,安装composer老是不成功,所以一直在windows下的php里,用直接解压的方法运行yii2. 后来越来越多的场合,需要用composer,终于下决心,要在Linux下搞掂它! ...

  5. LibreOJ #103. 子串查找

    题目描述 这是一道模板题. 给定一个字符串 A AA 和一个字符串 B BB,求 B BB 在 A AA 中的出现次数. A AA 中不同位置出现的 B BB 可重叠. 输入格式 输入共两行,分别是字 ...

  6. (1)Ngixn 编译安装 (版本:1.12.1)

        1.创建用户和群组     groupadd nginx     创建一个用户,不允许登陆和不创主目录     useradd -s /sbin/nologin -g nginx -M ngi ...

  7. Windows 8.1 explorer.exe 出错 “Application Hang”

    不知道为什么explorer常常会卡一下 看系统日志发现有来源于“Application Hang”的错误 部分常规信息: 程序 explorer.exe 版本 6.3.9600.17415 停止与 ...

  8. (二)mybaits之ORM模型

    前言:为什么还没有进入到mybatis的学习呢?因为mybatis框架的核心思想就是ORM模型,所以好好了解一下ORM模型是有必要哒. ORM模型   ORM(Object Relational Ma ...

  9. 博客-从github ghpage 转回通知

    博客迁回 这是我的github博客:http://www.flyfishonline.com/ 原因一 某QQ朋友:"......看了你的简历,根据你(github)博客看,似乎简历包装的过 ...

  10. Android(java)学习笔记147:自定义SmartImageView(继承自ImageView,扩展功能为自动获取网络路径图片)

    1. 有时候Android系统配置的UI控件,不能满足我们的需求,Android开发做到了一定程度,多少都会用到自定义控件,一方面是更加灵活,另一方面在大数据量的情况下自定义控件的效率比写布局文件更高 ...