题意:

给出一个1~n的数列,求把它分为两组数使得两组数的和相等的方案数。

分析:

如果可能分成两组,那么(n+1)n/2一定为偶数,且n%4=2或3。可以设dp[i][j]表示从1~i中的数拼出的方案数。

故,状态转移方程为:dp[i][j]=dp[i-1][j](用i)+dp[i-1][j-i](不用i)。(dp[i][0]=1)

#include <iostream>
#include <string>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define range(i,a,b) for(int i=a;i<=b;++i)
#define LL long long
#define rerange(i,a,b) for(int i=a;i>=b;--i)
#define fill(arr,tmp) memset(arr,tmp,sizeof(arr))
using namespace std;
int n;
LL dp[][];
void init(){
cin>>n;
fill(dp,);
dp[][]=;
}
void solve(){
if(!(n%)||n%==){
cout<<""<<endl;
return;
}
range(i,,n)dp[i][]=;
range(i,,n)range(j,,(i+)*i/)dp[i][j]=dp[i-][j]+dp[i-][j-i];
cout<<dp[n][(n+)*n/]/<<endl;
}
int main() {
init();
solve();
return ;
}

usaco-Subset Sums的更多相关文章

  1. 洛谷P1466 集合 Subset Sums

    P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...

  2. Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验

    Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...

  3. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  4. Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解

    Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  5. Codeforces348C - Subset Sums

    Portal Description 给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq ...

  6. CodeForces 348C Subset Sums(分块)(nsqrtn)

    C. Subset Sums time limit per test 3 seconds memory limit per test 256 megabytes input standard inpu ...

  7. DP | Luogu P1466 集合 Subset Sums

    题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...

  8. spoj-SUBSUMS - Subset Sums

    SUBSUMS - Subset Sums Given a sequence of N (1 ≤ N ≤ 34) numbers S1, ..., SN (-20,000,000 ≤ Si ≤ 20, ...

  9. 【USACO 2.2】Subset Sums (DP)

    N (1 <= N <= 39),问有多少种把1到N划分为两个集合的方法使得两个集合的和相等. 如果总和为奇数,那么就是0种划分方案.否则用dp做. dp[i][j]表示前 i 个数划分到 ...

  10. USACO Section 2.2: Subset Sums

    dp题,一碰到dp我基本就是跪,搜了网上的答案分两种,一维和二维. 先讲二维,sum[i][j]表示前i个数的subset里差值为j的分法数量.当加入数字i时,有两种选择,某一个set和另外一个set ...

随机推荐

  1. Redis实现之数据库(三)

    过期键删除策略 在Redis实现之数据库(二)一小节中,我们知道了数据库键的过期时间都保存在过期字典中,又知道了如果根据过期时间去判断一个键是否过期,现在剩下的问题是:如果一个键过期了,那么它什么时候 ...

  2. Python协程详解(二)

    上一章,我们介绍了Python的协程,并讲到用yield达到协程的效果,这一章,我们来介绍yield from的结构和作用 我们先来对比下yield和yield from的用法 def first_g ...

  3. 洛谷P1424小鱼的航程改进版

    题目链接https://www.luogu.org/problemnew/show/P1424

  4. 【Luogu P3371&P4779】【模板】单源最短路径(线段树优化Dijkstra)

    线段树优化$\rm dijkstra$ 线段树每个节点维护$[l,r]$中$dist$最小的点,删除则把该点$dist$赋值为$+\infty$,然后更新该点影响到的线段树上的其他节点即可. 可以得到 ...

  5. JAVA调用可执行程序或系统命令Runtime.getRuntime().exec

    用Java编写应用时,有时需要在程序中调用另一个现成的可执行程序或系统命令,这时可以通过组合使用Java提供的Runtime类和Process类的方法实现.下面是一种比较典型的程序模式: Proces ...

  6. Leetcode 632.最小区间

    最小区间 你有 k 个升序排列的整数数组.找到一个最小区间,使得 k 个列表中的每个列表至少有一个数包含在其中. 我们定义如果 b-a < d-c 或者在 b-a == d-c 时 a < ...

  7. 导入50G文件到mysql,然后再倒入sqlserver

    --导入大文件50G文件到mysql1.修改配置innodb_flush_log_at_trx_commit=0 2.导入时的注意事项set autocommit=1;show variables l ...

  8. Strut 2 ValueStack传送带机制

    源码与jar包下载(将rar改成jar,直接放在WEB_INF\lib目录中即可)    众所周知,Strut 2的Action类通过属性可以获得所有相关的值,如请求参数.Action配置参数.向其他 ...

  9. JDBC 学习笔记(九)—— ResultSetMetaData

    ResultSet 提供了一个 getMetaData() 方法,用来获取 ResultSet 对应的 ResultSetMetaData 对象: ResultSetMetaData getMetaD ...

  10. 习题:烽火传递(DP+单调队列)

    烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...