usaco-Subset Sums
题意:
给出一个1~n的数列,求把它分为两组数使得两组数的和相等的方案数。
分析:
如果可能分成两组,那么(n+1)n/2一定为偶数,且n%4=2或3。可以设dp[i][j]表示从1~i中的数拼出的方案数。
故,状态转移方程为:dp[i][j]=dp[i-1][j](用i)+dp[i-1][j-i](不用i)。(dp[i][0]=1)
#include <iostream>
#include <string>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define range(i,a,b) for(int i=a;i<=b;++i)
#define LL long long
#define rerange(i,a,b) for(int i=a;i>=b;--i)
#define fill(arr,tmp) memset(arr,tmp,sizeof(arr))
using namespace std;
int n;
LL dp[][];
void init(){
cin>>n;
fill(dp,);
dp[][]=;
}
void solve(){
if(!(n%)||n%==){
cout<<""<<endl;
return;
}
range(i,,n)dp[i][]=;
range(i,,n)range(j,,(i+)*i/)dp[i][j]=dp[i-][j]+dp[i-][j-i];
cout<<dp[n][(n+)*n/]/<<endl;
}
int main() {
init();
solve();
return ;
}
usaco-Subset Sums的更多相关文章
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解
Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Codeforces348C - Subset Sums
Portal Description 给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq ...
- CodeForces 348C Subset Sums(分块)(nsqrtn)
C. Subset Sums time limit per test 3 seconds memory limit per test 256 megabytes input standard inpu ...
- DP | Luogu P1466 集合 Subset Sums
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...
- spoj-SUBSUMS - Subset Sums
SUBSUMS - Subset Sums Given a sequence of N (1 ≤ N ≤ 34) numbers S1, ..., SN (-20,000,000 ≤ Si ≤ 20, ...
- 【USACO 2.2】Subset Sums (DP)
N (1 <= N <= 39),问有多少种把1到N划分为两个集合的方法使得两个集合的和相等. 如果总和为奇数,那么就是0种划分方案.否则用dp做. dp[i][j]表示前 i 个数划分到 ...
- USACO Section 2.2: Subset Sums
dp题,一碰到dp我基本就是跪,搜了网上的答案分两种,一维和二维. 先讲二维,sum[i][j]表示前i个数的subset里差值为j的分法数量.当加入数字i时,有两种选择,某一个set和另外一个set ...
随机推荐
- (HTML)写导航感悟
代码要规范,路径要写全 如: .div1 ul li a:link { text-decoration: none; color: white; } .div1 ul li a:visited { t ...
- Python登录人人网并抓取新鲜事
from sgmllib import SGMLParser import sys,urllib2,urllib,cookielib class spider(SGMLParser): def ...
- lua table长度解析
先来看lua table源码长度获取部分(ltable.c) j是数组部分的长度.首先判断数组长度大于0,并且数组最后一个是nil,就用二分法查找,返回长度. 如果t->node是 table的 ...
- P2065 贪心的果农
P2065 贪心的果农 题目描述 果农的花园里种着N棵果树.收获的季节终于来到了,果农决定,在接下来的M天时间里完成自己的收获工作.他的收获方式极其暴力——他将会将某棵果树砍倒来获取上面的果实.然而如 ...
- 电脑卡,eclipse Android stadio 卡,什么都卡解决方法
昨天还好好的,今天什么都没有动就很卡.Android stadio 半天,改了东西才编译.什么都慢一拍,你能感觉到,打开网页也好,什么也好. 莫名的问题,总是被莫名的解决.真的,下了个360杀毒,没效 ...
- Python框架之Django学习笔记(三)
开始一个项目 第一次使用 Django,必须进行一些初始化设置工作. 新建一个工作目录,例如 D:\tool\python\Python27\workspace\djcode,然后进入该目录. 转到创 ...
- 使用bat命令实现拖动快速安装APK包
平时安装APK包,每次都要打命令adb install *********** 很繁琐,网上找到一个用BAT命令快速安装的方法 在桌面创建一个bat文件,输入: @echo off title i ...
- ThinkPHP5 配置文件
配置目录 系统默认的配置文件目录就是应用目录(APP_PATH),也就是默认的application下面,并分为应用配置(整个应用有效)和模块配置(仅针对该模块有效). ├─application 应 ...
- [oldboy-django][1初识django]阻止默认事件发生 + ajax + 模态编辑对话框
阻止默认事件发生 a 阻止a标签默认事件发生方法 <a href="http://www.baidu.com" onclick="modalEdit();" ...
- JVM虚拟机系列(三)Class文件格式