台州学院we are without brain 训练 计算几何
A - View Angle
Flatland has recently introduced a new type of an eye check for the driver's licence. The check goes like that: there is a plane with mannequins standing on it. You should tell the value of the minimum angle with the vertex at the origin of coordinates and with all mannequins standing inside or on the boarder of this angle.
As you spend lots of time "glued to the screen", your vision is impaired. So you have to write a program that will pass the check for you.
Input
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of mannequins.
Next n lines contain two space-separated integers each: xi, yi (|xi|, |yi| ≤ 1000) — the coordinates of the i-th mannequin. It is guaranteed that the origin of the coordinates has no mannequin. It is guaranteed that no two mannequins are located in the same point on the plane.
Output
Print a single real number — the value of the sought angle in degrees. The answer will be considered valid if the relative or absolute error doesn't exceed 10 - 6.
Examples
2
2 0
0 2
90.0000000000
3
2 0
0 2
-2 2
135.0000000000
4
2 0
0 2
-2 0
0 -2
270.0000000000
2
2 1
1 2
36.8698976458
Note
Solution for the first sample test is shown below:

Solution for the second sample test is shown below:

Solution for the third sample test is shown below:

Solution for the fourth sample test is shown below:

就是给你一个二维平面的若干个点,让你选一个视角可以看到所有的点
我们可以考虑一下只有两个点的情况,就是最后一个点和第一个点形成的角度,另外的就是相邻两个的角度,但是要反着来啊,也就是补角。
我自己还傻乎乎的用atan写了一下atan2的实现
#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
const double PI=acos(-.);
const int N=1e5+;
double a[N],x,y;
int main()
{
int n;
scanf("%d",&n);
for(int i=; i<n; i++)scanf("%lf%lf",&x,&y),a[i]=*atan2(x,y)/PI;
sort(a,a+n);
double ans=a[n-]-a[];
for(int i=; i<n; i++)ans=min(ans,+a[i-]-a[i]);
printf("%.12f",ans);
return ;
}
B - Ghosts
Ghosts live in harmony and peace, they travel the space without any purpose other than scare whoever stands in their way.
There are nn ghosts in the universe, they move in the OXYOXY plane, each one of them has its own velocity that does not change in time: V→=Vxi→+Vyj→V→=Vxi→+Vyj→ where VxVx is its speed on the xx-axis and VyVy is on the yy-axis.
A ghost ii has experience value EXiEXi, which represent how many ghosts tried to scare him in his past. Two ghosts scare each other if they were in the same cartesian point at a moment of time.
As the ghosts move with constant speed, after some moment of time there will be no further scaring (what a relief!) and the experience of ghost kind GX=∑ni=1EXiGX=∑i=1nEXiwill never increase.
Tameem is a red giant, he took a picture of the cartesian plane at a certain moment of time TT, and magically all the ghosts were aligned on a line of the form y=a⋅x+by=a⋅x+b. You have to compute what will be the experience index of the ghost kind GXGX in the indefinite future, this is your task for today.
Note that when Tameem took the picture, GXGX may already be greater than 00, because many ghosts may have scared one another at any moment between [−∞,T][−∞,T].
Input
The first line contains three integers nn, aa and bb (1≤n≤2000001≤n≤200000, 1≤|a|≤1091≤|a|≤109, 0≤|b|≤1090≤|b|≤109) — the number of ghosts in the universe and the parameters of the straight line.
Each of the next nn lines contains three integers xixi, VxiVxi, VyiVyi (−109≤xi≤109−109≤xi≤109, −109≤Vxi,Vyi≤109−109≤Vxi,Vyi≤109), where xixi is the current xx-coordinate of the ii-th ghost (and yi=a⋅xi+byi=a⋅xi+b).
It is guaranteed that no two ghosts share the same initial position, in other words, it is guaranteed that for all (i,j)(i,j) xi≠xjxi≠xj for i≠ji≠j.
Output
Output one line: experience index of the ghost kind GXGX in the indefinite future.
Examples
4 1 1
1 -1 -1
2 1 1
3 1 1
4 -1 -1
8
3 1 0
-1 1 0
0 0 -1
1 -1 -2
6
3 1 0
0 0 0
1 0 0
2 0 0
0
Note
There are four collisions (1,2,T−0.5)(1,2,T−0.5), (1,3,T−1)(1,3,T−1), (2,4,T+1)(2,4,T+1), (3,4,T+0.5)(3,4,T+0.5), where (u,v,t)(u,v,t) means a collision happened between ghosts uu and vv at moment tt. At each collision, each ghost gained one experience point, this means that GX=4⋅2=8GX=4⋅2=8.
In the second test, all points will collide when t=T+1t=T+1.
The red arrow represents the 1-st ghost velocity, orange represents the 2-nd ghost velocity, and blue represents the 3-rd ghost velocity.
这个题他们在群里讨论过,其实就是直接去做差,也就是a*vx-vy的值的问题,经过一次这个点也要+1
但是ans要爆int的,这个加起来就是等差数列求和
#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI=acos(-.);
map<ll,int>M;
map<pair<int,int>,int>F;
int main()
{
int n,a,b;
long long ans=,t=;
scanf("%d%d%d",&n,&a,&b);
for(int i=,x,vx,vy; i<n; i++)
{
scanf("%d%d%d",&x,&vx,&vy);
ans+=M[a*1LL*vx-vy]++;
t+=F[make_pair(vx,vy)]++;
}
printf("%lld",*(ans-t));
return ;
}
台州学院we are without brain 训练 计算几何的更多相关文章
- 台州学院we are without brain 训练 后缀数组
sa[i]表示排名为 i 的后缀的第一个字符在原串中的位置 rank[i]表示按照从小到大排名 以i为下标开始的后缀的排名 height[i]表示排名为 i 和排名为 i+1的后缀的最长公共前缀的长 ...
- 台州学院maximum cow训练记录
前队名太过晦气,故启用最大牛 我们的组队大概就是18年初,组队阵容是17级生詹志龙.陶源和16级的黄睿博. 三人大学前均无接触过此类竞赛,队伍十分年轻.我可能是我们队最菜的,我只是知道的内容最多,靠我 ...
- LightOJ 1366 - Pair of Touching Circles (统计矩形内外切圆对)
1366 - Pair of Touching Circles PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limi ...
- LightOJ 1118 - Incredible Molecules (两圆面积交)
1118 - Incredible Molecules PDF (English) Statistics Forum Time Limit: 0.5 second(s) Memory Limit: ...
- 算法训练 Pollution Solution(计算几何)
问题描述 作为水污染管理部门的一名雇员,你需要监控那些被有意无意倒入河流.湖泊和海洋的污染物.你的其中一项工作就是估计污染物对不同的水生态系统(珊瑚礁.产卵地等等)造成的影响. 你计算所使用的模型已经 ...
- 2018牛客网暑假ACM多校训练赛(第三场)I Expected Size of Random Convex Hull 计算几何,凸包,其他
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round3-I.html 题目传送门 - 2018牛客多校赛第三场 I ...
- 【2017多校训练2+计算几何+板】HDU 6055 Regular polygon
http://acm.hdu.edu.cn/showproblem.php?pid=6055 [题意] 给定n个格点,问有多少个正多边形 [思路] 因为是格点,只可能是正方形 枚举正方形的对角线,因为 ...
- [知识点]计算几何I——基础知识与多边形面积
// 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxaq.html 1.前言 ...
- China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing
日前,中国科学院神经科学研究所.中国科学院脑科学与智能技术卓越创新中心.香港科技大学生命科学部和分子神经科学国家重点实验室.中国科技大学自动化研究所在 Cell 上联合发表了一篇概述论文<Chi ...
随机推荐
- redis 知识归档
中文版redis命令 http://www.redis.net.cn/order/ redis例子 https://github.com/ServiceStack/ServiceStack.Ex ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- mvc的help和functions语法
@helper show(int num ) { ) { @:存在 } else { @:不存在 } } @functions { /// <summary> /// 方法必须要求为静态 ...
- 第008课_第1个ARM落版程序及引申
form:第008课_第1个ARM裸板程序及引申 第001节_辅线1_硬件知识_LED原理图 当我们学习C语言的时候,我们会写个Hello程序.那当我们下ARM程序,也该有一个简单的程序引领我们入门, ...
- 禁止DataGridView控件中添加和删除行
实现效果: 知识运用: DataGridView控件的AllowUserToAddRows AllowUserDeleteRows和ReadOnly属性 实现代码: private void btn_ ...
- IE下contentWindow对象与FF、Chrome下的区别
在ie中frame(iframe)标签通过name和id获取的对象是不同的. 通过name获取的本身就是contentWindow对象.所以 在ie中不用再找contentWindow了 例: let ...
- javaweb基础(23)_jsp自定义标签
一.自定义标签的作用 自定义标签主要用于移除Jsp页面中的java代码. 二.自定义标签开发和使用 2.1.自定义标签开发步骤 1.编写一个实现Tag接口的Java类(标签处理器类) 1 packag ...
- javaweb基础(2)_tomcat服务器配置
一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件. 如果想修改Tomcat服务器的启动端口,则可以在server.xml ...
- NOIP复习之1 数学数论
noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...
- DELL PowerEdge R620安装Windows server(你想将windows安装在何处”找不到任何本地磁盘,“找不到驱动器”)已解决!
你可能碰到过DELL服务器上安装Windows server系列系统时无法识别或找不到硬盘的问题,对于DELL PowerEdge11-14代机器的,大家可以采用DELL的Lifecycle cont ...