题目链接

1057: [ZJOI2007]棋盘制作

Time Limit: 20 Sec  Memory Limit: 162 MB
Submit: 2027  Solved: 1019
[Submit][Status][Discuss]

Description

国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?

Input

第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。

Output

包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。

Sample Input

3 3
1 0 1
0 1 0
1 0 0

Sample Output

4
6
 
 
这个和找最大全为1的矩阵没有什么区别吧, 用单调栈就可以了
 
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
int dp[][], l[][], r[][], a[][];
int main()
{
int n, m;
cin>>n>>m;
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
scanf("%d", &a[i][j]);
if(i == ) {
dp[i][j] = ;
} else if(a[i][j] != a[i-][j]) {
dp[i][j] = dp[i-][j]+;
} else {
dp[i][j] = ;
}
}
}
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
l[i][j] = j;
while(l[i][j]> && dp[i][j]<=dp[i][l[i][j]-] && a[i][l[i][j]] != a[i][l[i][j]-])
l[i][j] = l[i][l[i][j]-];
}
for(int j = m; j>=; j--) {
r[i][j] = j;
while(r[i][j]<m && dp[i][j]<=dp[i][r[i][j]+] && a[i][r[i][j]] != a[i][r[i][j]+])
r[i][j] = r[i][r[i][j]+];
}
}
int ans1 = , ans2 = ;
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
int len = r[i][j]-l[i][j]+;
ans1 = max(ans1, len*dp[i][j]);
len = min(len, dp[i][j]);
ans2 = max(ans2, len*len);
}
}
cout<<ans2<<endl<<ans1<<endl;
return ;
}

bzoj 1057: [ZJOI2007]棋盘制作 单调栈的更多相关文章

  1. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  2. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  3. [ZJOI2007]棋盘制作 (单调栈)

    [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间 ...

  4. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

  5. BZOJ1057[ZJOI2007]棋盘制作 [单调栈]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...

  6. BZOJ 1057: [ZJOI2007]棋盘制作

    Decsription 给你一个矩阵,求最大了 01相间 的矩阵. Sol DP+悬线法. 这是一个论文啊 <浅谈用极大化思想解决最大子矩形问题>--王知昆. 枚举每一根悬线,记录最左/右 ...

  7. [ZJOI2007]棋盘制作 (单调栈,动态规划)

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 8 \times 88×8 大小的黑白相间的方阵,对应八八六十四卦, ...

  8. 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...

  9. 1057: [ZJOI2007]棋盘制作

    1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...

随机推荐

  1. 面向对象程序设计-C++_课时28静态对象_课时29静态成员

    Static in C++ Two basic meanings Static Storage --allocated once at a fixed address Visibility of a ...

  2. Javascript 获取窗口的大小和位置

    在Javascript中可以使用OuterWidth,OuterHeight 获取浏览器的大小.用 innerWidth,innerHeight 来获取窗口的大小(除去浏览器边框部分).对于IE6 及 ...

  3. java获取当前路径的几种方法

    1.利用System.getProperty()函数获取当前路径: System.out.println(System.getProperty("user.dir"));//use ...

  4. c# session总结

    C# 中对 Session 的“(string)”.“.ToString()”与“Convert.ToString”用法笔记 在实际操作当中,我们经常会遇到将 Session 的值转为 String ...

  5. Easyui + jQuery表单提交 给 Controller patr1

    2014-11-15  总结上周在公司开发所用到的技术,由于是刚找的工作(一个大三实习生)+自己的技术菜,有很多地方都是怎么想就怎么实现的, 如果你有什么更好的解决方法,在看见这篇博客的时候,希望你能 ...

  6. Android 实现GIF播放(解码)

    实现原理很简单,先把GIF动画解码成多张Bitmap图片,然后放到AnimationDrawable里面去逐一播放即可. GifHelper代码: package com.android.view; ...

  7. ThinkPHP第二十六天(JQuery操作select,SESSION和COOKIE)

    1.JQuery操作select,假设<select id="my"> A:双击选项<option>事件,应该是select的dbclick事件. B:获得 ...

  8. 编程习题——Maximum Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  9. IIS7内建账号,应用程序池

    在IIS7以前的IIS版本中有一个本地帐号,是在安装时创建的,叫做 IUSR_MachineName.一旦启用匿名身份认证,这个IUSR_MachineName帐号就是IIS默认使用的身份(ident ...

  10. android HTTP发送及MD5加密收集

    发送部分: public void MyFunction{ HttpClient httpclient = new DefaultHttpClient(); //你的URL HttpPost http ...