神题。。。

扒自某神犇题解:

http://blog.csdn.net/aarongzk/article/details/50655471

 #include<bits/stdc++.h>
#define LL long long
using namespace std;
inline LL ra()
{
LL x=; char ch=getchar();
while (ch<'' || ch>'') ch=getchar();
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x;
} const int maxn=; LL n,mod,f[maxn],size[maxn];
LL fac[maxn],inv[maxn]; LL C(int n, int m)
{
if (n<m) return ;
if (n<mod && m<mod) return fac[n]*inv[m]%mod*inv[n-m]%mod;
return C(n/mod,m/mod)*C(n%mod,m%mod);
} int main()
{
n=ra(); mod=ra(); fac[]=;
for (int i=; i<=n; i++) fac[i]=fac[i-]*i%mod;
inv[]=inv[]=;
for (int i=; i<=n; i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for (int i=; i<=n; i++) inv[i]=inv[i]*inv[i-]%mod;
for (int i=n; i>=; i--)
{
size[i]=size[i<<]+size[i<<|]+;
f[i]=((i<<)>n?:f[i<<])*((i<<|)>n?:f[i<<|])%mod*C(size[i]-,size[i<<])%mod;
}
cout<<f[]<<endl;
return ;
}

bzoj 2111: [ZJOI2010]Perm 排列计数的更多相关文章

  1. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  2. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  3. bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...

  4. BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...

  5. bzoj 2111: [ZJOI2010]Perm 排列计数 Lucas

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

  6. bzoj 2111: [ZJOI2010]Perm 排列计数【树形dp+lucas】

    是我想复杂了 首先发现大于关系构成了一棵二叉树的结构,于是树形dp 设f[i]为i点的方案数,si[i]为i点的子树大小,递推式是\( f[i]=f[i*2]*f[i*2+1]*C_{si[i]-1} ...

  7. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  8. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  9. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

随机推荐

  1. 吴裕雄--天生自然TensorFlow2教程:损失函数及其梯度

    import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...

  2. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 网格系统实例:堆叠的水平

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  3. [蓝桥杯2017初赛]Excel地址

    题目描述 Excel单元格的地址表示很有趣,它使用字母来表示列号. 比如,A表示第1列,B表示第2列,Z表示第26列,AA表示第27列,AB表示第28列,BA表示第53列,.... 当然Excel的最 ...

  4. 关于cctype头⽂件⾥的⼀些函数

    本文摘录柳神笔记: 刚刚在头⽂件那⼀段中也提到, #include 本质上来源于C语⾔标准函数库中的头⽂件 #include ,其实并不属于C++新特性的范畴,在刷PAT⼀些字符串逻辑题的时候也经常⽤ ...

  5. Update(Stage4):spark_rdd算子:第2节 RDD_action算子_分区_缓存:算子和分区

    一.reduce和reduceByKey: 二.:RDD 的算子总结 RDD 的算子大部分都会生成一些专用的 RDD map, flatMap, filter 等算子会生成 MapPartitions ...

  6. OpenTSDB 写入数据

    1. 关于 Metrics, value, tag name, tag value opentsdb的每个时间序列必须有一个metric和一个或多个tag对,每个时间序列每小时的数据保存一行.open ...

  7. 关于Java大整数是否是素数

    题目描述 请编写程序,从键盘输入两个整数m,n,找出等于或大于m的前n个素数. 输入格式: 第一个整数为m,第二个整数为n:中间使用空格隔开.例如: 103 3 输出格式: 从小到大输出找到的等于或大 ...

  8. RestTemplate HttpMessageConverter报错的解决方案no suitable HttpMessageConverter

    错误 no suitable HttpMessageConverter found for response type and content type [text/html;charset=UTF- ...

  9. idna与utf-8编码漏洞

    来自Black hat 2019 原理什么是IDN?国际化域名(Internationalized Domain Name,IDN)又名特殊字符域名,是指部分或完全使用特殊文字或字母组成的互联网域名, ...

  10. 使用KVC键值编码

    掌握KVC从不使用setter.getter.点语法开始. ----- 前言 对象的内部状态是由属性进行封装的.访问对象属性的方式平时在开发过程中用得最多的是getter方法和点语法.键值编程KVC也 ...