A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int N=1E4+;
bool pre[N];
vector<int >ve[N];
typedef long long ll;
ll bits[];
int depth[N],fa[N][];
void inint(){
bits[]=;
for(int i=;i<=;i++) bits[i]=bits[i-]<<;
}
void dfs(int x,int y){
depth[x]=depth[y]+;
fa[x][]=y;
for(int i=;i<=;i++){
fa[x][i]=fa[fa[x][i-]][i-];
}
for(int i=;i<ve[x].size();i++){
int x1=ve[x][i];
if(x1!=y){
dfs(x1,x);
}
}
}
int lca(int x,int y){
if(depth[x]<depth[y]) swap(x,y);
int dif=depth[x]-depth[y];
for(int i=;i>=;i--){
if(dif>=bits[i]){
x=fa[x][i];
dif-=bits[i];
}
}
if(x==y) return x;
for(int i=;i>=;i--){
if(depth[x]>=bits[i]&&fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
} int main(){
int t;
inint();
scanf("%d",&t);
while(t--){
memset(pre,,sizeof(pre));
memset(fa,,sizeof(fa));
memset(depth,,sizeof(depth));
int n;
scanf("%d",&n);
int x,y;
for(int i=;i<=n-;i++){
scanf("%d%d",&x,&y);
ve[x].push_back(y);
ve[y].push_back(x);
pre[y]=;
}
int ancestor; for(int i=;i<=n;i++){
if(pre[i]==){
ancestor=i;
break;
}
}
dfs(ancestor,);
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y)); for(int i=;i<=n;i++){
ve[i].clear();
}
}
return ;
}

还可以用 暴力 朴素算法来算

#include<stdio.h>///LCA最近公共祖先查询,朴素算法
#include<string.h>
int fa[]; int deep(int x)///计算x节点深度
{
int cnt=;
while(x)
{
cnt++;
x=fa[x];
}
return cnt;
}
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
memset(fa,,sizeof(fa));///该数组记录每个节点的父亲,根节点父亲为0
int s,f;
scanf("%d",&n);
for(int i=;i<n-;i++){
scanf("%d%d",&f,&s);
fa[s]=f;
} int a,b;
scanf("%d%d",&a,&b);
int x1=deep(a),y1=deep(b);
//只是用深度做了一个判断 取了一个差。
if(x1<y1)///查询的深度若两个节点深度不同,将较深的节点先上移
{
int tt=y1-x1;
while(tt--)
b=fa[b];
}
else if(x1>y1){
int tt=x1-y1;
while(tt--)
a=fa[a];
} while(a!=b)///两个节点深度相同时同时向上寻找父亲,直到父亲相同
a=fa[a],b=fa[b];
printf("%d\n",a);
}
}

LCA Nearest Common Ancestors (很典型的例题)的更多相关文章

  1. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  4. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  5. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  6. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  7. pku 1330 Nearest Common Ancestors LCA离线

    pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...

  8. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  9. poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30147   Accept ...

随机推荐

  1. 太赞了!阿里几位工程师重写了 《Java 并发编程》

    事情是这样的,前些日子和得知一个读者在准备阿里的面试,我蛮有兴趣的跟他聊了起来,随着话题越来越深入,我发现这位读者有意思,他和几位阿里的工程师之前编写了一本 concurrent.redspider. ...

  2. eNSP上NAT的配置

    NAT介绍: 早在20世纪90年代初,有关RFC文档就提出了IP地址耗尽的可能性.IPv6技术的提出虽然可以从根本上解决地址短缺的问题,但是也无法立刻替换现有成熟且广泛应用的IPv4网络.既然不能 立 ...

  3. 什么是CPU load

    最近经常收到告警,CPU load大于阈值告警.查看系统的CPU是12核,告警阈值设置的是8.对于CPU load一直有个模糊的概念,具体是什么意思还真搞不明白,趁这个机会好好搞搞究竟. 1.查看CP ...

  4. effective-java学习笔记---优先使用泛型方法30

    泛型类型比需要在客户端代码中强制转换的类型更安全,更易于使用. 当你设计新的类型时,确保它们可以在没有这种强制转换的情况下使用. 这通常意味着使类型泛型化. 如果你有任何现有的类型,应该是泛型的但实际 ...

  5. 累加数的贡献 CodeForces - 1213D2

    题意: 第一行输入n,k,表示有n个数,可以进行整除2操作,要是数组有k个相等的数,最少需要几次操作. 思路: 用一个数组记录每一个数出现的次数,如果一开始大于等于k,直接输出0,否则对这n个数进行从 ...

  6. Jenkins打造多分支流水线指南

    overview: 多分支工作流程带来了以下几个关键能力: 在代码仓库中,每个新分支都有自己单独的工作流水线(job). 每个工作流水线都记录了对应分支的构建和变更历史. 可以自定义设置流水线随着分支 ...

  7. [vijos1782]借教室<线段树>

      题目链接:https://vijos.org/p/1782 题意:一个区间1,n.m次操作,每次操作让l,r区间值减去d,当有任何一个值小于0就输出当前是第几个操作 这道题其实是没有什么难度的,是 ...

  8. MATLAB 排序、拟合

    一.数据排序整合 1.随机生成的数,从小到大排序 clear rand('seed',1)%设置随机种子,确保随机数一样 edge_range=unifrnd (1, 10, 1, 10) edge_ ...

  9. Java常用类__装箱/拆箱

    以下是常用的各两种方法(各类提供了构造方法,静态方法) 一.基本数据类型 转化为 包装类(装箱) 例:int i=10: Integer num=i;//num=10 二.包装类 转化为  基本数据类 ...

  10. 论redis的内存占用

    目前大部分成程序员都将一些数据放入到了缓存(redis)中,但是你是否对这个redis内存占用了解呢?下面我们就来说一下redis的内存最优使用: 1.我们首先来介绍一下我们在存入大量数据到redis ...