A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int N=1E4+;
bool pre[N];
vector<int >ve[N];
typedef long long ll;
ll bits[];
int depth[N],fa[N][];
void inint(){
bits[]=;
for(int i=;i<=;i++) bits[i]=bits[i-]<<;
}
void dfs(int x,int y){
depth[x]=depth[y]+;
fa[x][]=y;
for(int i=;i<=;i++){
fa[x][i]=fa[fa[x][i-]][i-];
}
for(int i=;i<ve[x].size();i++){
int x1=ve[x][i];
if(x1!=y){
dfs(x1,x);
}
}
}
int lca(int x,int y){
if(depth[x]<depth[y]) swap(x,y);
int dif=depth[x]-depth[y];
for(int i=;i>=;i--){
if(dif>=bits[i]){
x=fa[x][i];
dif-=bits[i];
}
}
if(x==y) return x;
for(int i=;i>=;i--){
if(depth[x]>=bits[i]&&fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
} int main(){
int t;
inint();
scanf("%d",&t);
while(t--){
memset(pre,,sizeof(pre));
memset(fa,,sizeof(fa));
memset(depth,,sizeof(depth));
int n;
scanf("%d",&n);
int x,y;
for(int i=;i<=n-;i++){
scanf("%d%d",&x,&y);
ve[x].push_back(y);
ve[y].push_back(x);
pre[y]=;
}
int ancestor; for(int i=;i<=n;i++){
if(pre[i]==){
ancestor=i;
break;
}
}
dfs(ancestor,);
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y)); for(int i=;i<=n;i++){
ve[i].clear();
}
}
return ;
}

还可以用 暴力 朴素算法来算

#include<stdio.h>///LCA最近公共祖先查询,朴素算法
#include<string.h>
int fa[]; int deep(int x)///计算x节点深度
{
int cnt=;
while(x)
{
cnt++;
x=fa[x];
}
return cnt;
}
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
memset(fa,,sizeof(fa));///该数组记录每个节点的父亲,根节点父亲为0
int s,f;
scanf("%d",&n);
for(int i=;i<n-;i++){
scanf("%d%d",&f,&s);
fa[s]=f;
} int a,b;
scanf("%d%d",&a,&b);
int x1=deep(a),y1=deep(b);
//只是用深度做了一个判断 取了一个差。
if(x1<y1)///查询的深度若两个节点深度不同,将较深的节点先上移
{
int tt=y1-x1;
while(tt--)
b=fa[b];
}
else if(x1>y1){
int tt=x1-y1;
while(tt--)
a=fa[a];
} while(a!=b)///两个节点深度相同时同时向上寻找父亲,直到父亲相同
a=fa[a],b=fa[b];
printf("%d\n",a);
}
}

LCA Nearest Common Ancestors (很典型的例题)的更多相关文章

  1. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  4. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  5. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  6. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  7. pku 1330 Nearest Common Ancestors LCA离线

    pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...

  8. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  9. poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30147   Accept ...

随机推荐

  1. RabbitMQ 在Ubuntu18.04上的安装

    1.安装erlang由于rabbitMq需要erlang语言的支持,在安装rabbitMq之前需要安装erlang sudo apt-get install erlang2.安装Rabbitmq更新源 ...

  2. ELK 环境搭建总结

    开始动手前的说明 我搭建这一套环境的时候是基于docker搭建的,用到了docker-compose,所以开始前要先安装好docker . docker-compose,并简单的了解docker . ...

  3. CF 631C report

    Each month Blake gets the report containing main economic indicators of the company "Blake Tech ...

  4. stm32CubeMx+TrueSTUDIO+uc/os-III移植开发(一)

    自从接触到stm32cubemx后,发现使用起来很方便,用来做项目开发的话,由于是图形化操作界面,工作效率比较快.如果要学习操作系统,以前的IDE如keil,IAR等IDE对操作系统的代码调试起来不够 ...

  5. arcgis server10.7修改打印模板后前台调用不生效

    在10.5.1及之前的版本中,如果更改打印地图模板,如字体设置,那么直接修改[ArcGIS for Server 安装目录]/Templates/ExportWebMapTemplates下的mxd的 ...

  6. python文件调用方法

    文件输入输出 open函数可以对文本文件进行读写的操作 基本形式: open(filename,mode) filename是文件名,可以写为绝对路径也可以是相对路径 mode是打开模式. open函 ...

  7. MATLAB 大数相乘溢出显示

    解一道面试题——华为社招现场面试1:请使用代码计算1234567891011121314151617181920*2019181716151413121110987654321 . 乘积是逐位相乘,也 ...

  8. JVM中垃圾回收机制如何判断是否死亡?详解引用计数法和可达性分析 !

    因为热爱,所以坚持. 文章下方有本文参考电子书和视频的下载地址哦~ 这节我们主要讲垃圾收集的一些基本概念,先了解垃圾收集是什么.然后触发条件是什么.最后虚拟机如何判断对象是否死亡. 一.前言   我们 ...

  9. Django之queryset API

    1. QuerySet 创建对象的方法 >>> from blog.models import Blog >>> b = Blog(name='Beatles Bl ...

  10. CentOS下的Docker离线安装

    Linux下离线安装Docker 一.基础环境 1.操作系统:CentOS 7.3 2.Docker版本:18.06.1 官方下载地址(打不开可能很慢) 3.百度云Docker 18.06.1地址:h ...