A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int N=1E4+;
bool pre[N];
vector<int >ve[N];
typedef long long ll;
ll bits[];
int depth[N],fa[N][];
void inint(){
bits[]=;
for(int i=;i<=;i++) bits[i]=bits[i-]<<;
}
void dfs(int x,int y){
depth[x]=depth[y]+;
fa[x][]=y;
for(int i=;i<=;i++){
fa[x][i]=fa[fa[x][i-]][i-];
}
for(int i=;i<ve[x].size();i++){
int x1=ve[x][i];
if(x1!=y){
dfs(x1,x);
}
}
}
int lca(int x,int y){
if(depth[x]<depth[y]) swap(x,y);
int dif=depth[x]-depth[y];
for(int i=;i>=;i--){
if(dif>=bits[i]){
x=fa[x][i];
dif-=bits[i];
}
}
if(x==y) return x;
for(int i=;i>=;i--){
if(depth[x]>=bits[i]&&fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
} int main(){
int t;
inint();
scanf("%d",&t);
while(t--){
memset(pre,,sizeof(pre));
memset(fa,,sizeof(fa));
memset(depth,,sizeof(depth));
int n;
scanf("%d",&n);
int x,y;
for(int i=;i<=n-;i++){
scanf("%d%d",&x,&y);
ve[x].push_back(y);
ve[y].push_back(x);
pre[y]=;
}
int ancestor; for(int i=;i<=n;i++){
if(pre[i]==){
ancestor=i;
break;
}
}
dfs(ancestor,);
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y)); for(int i=;i<=n;i++){
ve[i].clear();
}
}
return ;
}

还可以用 暴力 朴素算法来算

#include<stdio.h>///LCA最近公共祖先查询,朴素算法
#include<string.h>
int fa[]; int deep(int x)///计算x节点深度
{
int cnt=;
while(x)
{
cnt++;
x=fa[x];
}
return cnt;
}
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
memset(fa,,sizeof(fa));///该数组记录每个节点的父亲,根节点父亲为0
int s,f;
scanf("%d",&n);
for(int i=;i<n-;i++){
scanf("%d%d",&f,&s);
fa[s]=f;
} int a,b;
scanf("%d%d",&a,&b);
int x1=deep(a),y1=deep(b);
//只是用深度做了一个判断 取了一个差。
if(x1<y1)///查询的深度若两个节点深度不同,将较深的节点先上移
{
int tt=y1-x1;
while(tt--)
b=fa[b];
}
else if(x1>y1){
int tt=x1-y1;
while(tt--)
a=fa[a];
} while(a!=b)///两个节点深度相同时同时向上寻找父亲,直到父亲相同
a=fa[a],b=fa[b];
printf("%d\n",a);
}
}

LCA Nearest Common Ancestors (很典型的例题)的更多相关文章

  1. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  4. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  5. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  6. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  7. pku 1330 Nearest Common Ancestors LCA离线

    pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...

  8. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  9. poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30147   Accept ...

随机推荐

  1. 李瑞红 201771010111《面向对象程序设计(java)》第一周学习总结

    李瑞红 201771010111<面向对象程序设计(java)>第一周学习总结 第一部分:课程准备部分 填写课程学习 平台注册账号, 平台名称 注册账号 博客园:www.cnblogs.c ...

  2. OpenCV-Python 交互式前景提取使用GrabCut算法 | 三十五

    目标 在本章中, 我们将看到GrabCut算法来提取图像中的前景 我们将为此创建一个交互式应用程序. 理论 GrabCut算法由英国微软研究院的Carsten Rother,Vladimir Kolm ...

  3. 双剑合璧的开源项目Kitty-Cloud

    项目地址 https://github.com/yinjihuan/kitty-cloud 背景 做这个项目主要是想将个人的一些经验通过开源的形式进行输出,不一定能帮到所有人,有感兴趣的朋友可以关注学 ...

  4. .Net Web Api返回Json数据中原对象变量名大小写问题

    这两天在工作中使用SignalR的WebSocket做数据实时传递的功能开发,在后端主动向前端广播数据以Json传递时,前端获取的Json中对应类的变量名首字母默认传递的是大写.而前端一直获取到的后台 ...

  5. 基于.NetCore3.1搭建项目系列 —— 使用Swagger导出文档 (番外篇)

    前言 回顾之前的两篇Swagger做Api接口文档,我们大体上学会了如何在net core3.1的项目基础上,搭建一套自动生产API接口说明文档的框架. 本来在Swagger的基础上,前后端开发人员在 ...

  6. ionic中select下拉框点击无反应解决办法

    两种解决办法: 1.在select外的div加入属性 data-tap-disabled=”true” 2.找到ionic.bundle.js文件 的下面这个函数,添加如图两行代码  

  7. CTR学习笔记&代码实现2-深度ctr模型 MLP->Wide&Deep

    背景 这一篇我们从基础的深度ctr模型谈起.我很喜欢Wide&Deep的框架感觉之后很多改进都可以纳入这个框架中.Wide负责样本中出现的频繁项挖掘,Deep负责样本中未出现的特征泛化.而后续 ...

  8. 【Redis】集群NetCore实战

    环境准备 1. Redis集群(Windows集群搭建) 启动Redis集群,给每个节点加上Title start .conf start .conf start .conf start .conf ...

  9. 为什么MySQL要用B+树?聊聊B+树与硬盘的前世今生【宇哥带你玩转MySQL 索引篇(二)】

    为什么MySQL要用B+树?聊聊B+树与硬盘的前世今生 在上一节,我们聊到数据库为了让我们的查询加速,通过索引方式对数据进行冗余并排序,这样我们在使用时就可以在排好序的数据里进行快速的二分查找,使得查 ...

  10. django生成验证码

    django生成验证码 # 制作验证码 def verify_code(): # 1,定义变量,用于画面的背景色.宽.高 # random.randrange(20, 100)意思是在20到100之间 ...