摩尔投票算法( Boyer-Moore Voting Algorithm)
一、Majority Element题目介绍:给定一个长度为n的数组的时候,找出其中的主元素,即该元素在数组中出现的次数大于n/2的取整。题目中已经假定所给的数组一定含有元素,且主元素一定存在。一下是一些常用方法:
- 遍历每一个元素,并计数
- 排序法
二、摩尔投票算法:摩尔投票算法的时间和空间都很低,时间复杂度为O(n),空间复杂度为O(1),这也是选择遮盖算法的原因。
摩尔投票算法是一种在线性时间O(n)和线性空间复杂度下,在一个元素序列中,查找出现次数最多的元素;
算法实现
1.定义两个变量:m存储当前变量到的元素,count为计数器,初始情况下,count=0;
2.依次遍历数组中的每个元素,当遍历到元素x时,
如果count == 0,那么m=x,然后将count=1;
如果count != 0,将m与x进行比较,如果相等,count++;如果不等,count--;
3.处理完后,最后m存储的值就是这个序列中最多的元素;
int MajorityVote(vector<int> nums) {
int res = 0, cnt = 0;
for (auto &num : nums) {
if (cnt == 0) {
res = num;
cnt++;
}
else if (num == res)cnt++;
else cnt--;
}
return res;
}
三、摩尔投票算法的改进:
1,题目: LeetCode 229 [Majority Element II]
给定一个整型数组,找到所有主元素,它在数组中的出现次数严格大于数组元素个数的三分之一。算法:每次删除三个不相同的数,最后留下的一定是出现次数超过1/3的数,这个思想可以推广到出现次数超过1/k次的元素有哪些。
因为出现次数大于n/3的元素最多只有两个,所以最开始可以维护两个数字(num1,num2)和两个计数器(counter1,counter2);
遍历数组,当数组中元素和num1或者num2相同,对应的counter1或者counter2加1;
如果counter1或counter2为0,将遍历到的该元素赋给num1或者nums2;
否则counter1和counter2都减1。
C++代码
class Solution {
public:
vector<int> majorityElement(vector<int>& nums) {
vector<int> re;
if (nums.size()==0) return re;
int candidate1 = 0;
int count1 = 0;
int candidate2 = 0;
int count2 = 0;
for (int i=0; i<nums.size(); i++) {
if (nums[i] == nums[candidate1]) count1++;
else if (nums[i] == nums[candidate2]) count2++;
else if (count1==0) {
candidate1 = i;
count1 = 1;
}
else if (count2==0) {
candidate2 = i;
count2 = 1;
}
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
for (int i=0; i<nums.size(); i++) {
if (nums[i] == nums[candidate1]) count1++;
else if (nums[i] == nums[candidate2]) count2++;
}
if (count1 > nums.size()/3) re.push_back(nums[candidate1]);
if (count2 > nums.size()/3) re.push_back(nums[candidate2]);
return re;
}
};
摩尔投票算法( Boyer-Moore Voting Algorithm)的更多相关文章
- Moore majority vote algorithm(摩尔投票算法)
Boyer-Moore majority vote algorithm(摩尔投票算法) 简介 Boyer-Moore majority vote algorithm(摩尔投票算法)是一种在线性时间O( ...
- 洛谷 P2397:yyy loves Maths VI (mode)(摩尔投票算法)
题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 [h1]udp2:第一题因为语 ...
- leetcode 169. Majority Element 多数投票算法(Boyer-Moore Majority Vote algorithm)
题目: Given an array of size n, find the majority element. The majority element is the element that ap ...
- Leetcode Majority Element系列 摩尔投票法
先看一题,洛谷2397: 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 [h ...
- 【Warrior刷题笔记】力扣169. 多数元素 【排序 || 哈希 || 随机算法 || 摩尔投票法】详细注释 不断优化 极致压榨
题目 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/majority-element/ 注意,该题在LC中被标注为easy,所以我们更多应该关 ...
- leetcode 229. Majority Element II(多数投票算法)
就是简单的应用多数投票算法(Boyer–Moore majority vote algorithm),参见这道题的题解. class Solution { public: vector<int& ...
- LeetCode题解-----Majority Element II 摩尔投票法
题目描述: Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The a ...
- luogu P3765 总统选举(线段树维护摩尔投票+平衡树)
这题需要一个黑科技--摩尔投票.这是一个什么东西?一个神奇的方法求一个序列中出现次数大于长度一半的数. 简而言之就是同加异减: 比如有一个代表投票结果的序列. \[[1,2,1,1,2,1,1]\] ...
- Oracle RAC中的投票算法
RAC集群中有三台机器,A,B,C A,B,C都会有3票,假设这是A的心跳线出现问题,整个RAC集群就划分为两个paritition, 一个是只有A的partition,一个是B,C组成的partit ...
随机推荐
- JavaFX之FXML+CSS创建窗体以及透明窗体添加阴影
前言 开通博客园有一段日子了,一直没空也没想好该写点什么.最近正好在做一个桌面程序,初次接触JavaFX,体验下来确实比swing好用不少.索性便记记学习笔记吧,虽然FX好像挺没存在感,没人用的感觉. ...
- ggplot2(5) 工具箱
5.1 简介 ggplot2的图层化架构鼓励我们以一种结构化的方式来设计和构建图形.本章旨在概述可用的几何对象和统计变换,在文中逐个详述.每一节都解决一个特定的作图问题. 5.2 图层叠加的总体策略 ...
- async,await怎么用
async声明一个函数是异步的,await用于等待异步完成,并且await只能在async中使用. 使用async,await并行处理请求,速度减半: 将多个promise直接发起请求,先执行asyn ...
- 菜鸟对java和Go的理解
1.go对比java go通过结构体嵌套+接口实现类似面向对象中的继承和多态.个人认为尤其是go的接口抓住了多态的本质.而Go提倡的面向接口的思想也可能使得架构上更加解耦. 2.关于Go不要通过共享内 ...
- 解决不管其他元素z-index设置多高,都在视频下面的方法
<div style="z-index:-1"> <embed name="Movie1" src="http://ecards.s ...
- liunx 安装 zookeeper(转)
转自:https://www.cnblogs.com/expiator/p/9853378.html linux安装zookeeper及使用 一.安装条件 想要安装zookeeper,必须先在linu ...
- 由国产性能测试工具WEB压力测试仿真能力对比让我想到的
软件的行业在中国已得到长足的发展,软件的性能测试在软件研发过程显得越来越重要.国产的性能工具在好多大公司都在提供云服务的有偿收费测试.如:阿里的PTS(Performance Testing Serv ...
- 蓝桥杯vip题阶乘计算
蓝桥杯vip题阶乘计算 详细题目 输入一个正整数n,输出n!的值. 其中n!=123*-*n. 算法描述 n!可能很大,而计算机能表示的整数范围有限,需要使用高精度计算的方法.使用一个数组A来表示一个 ...
- Java抽象类和接口的区别及联系
抽象类 注:先将抽象类中的两种方法解释完,再综合解释抽象类 抽象方法 应用场景:其下所有子类都应该有该方法但是大部分子类具体的执行步骤是有所不同的. 必须重写:也可以说"必须实现" ...
- mysql-8.0.19-winx64下载
mysql-8.0.19-winx64 下载链接 提取码:m7qp