摩尔投票算法( Boyer-Moore Voting Algorithm)
一、Majority Element题目介绍:给定一个长度为n的数组的时候,找出其中的主元素,即该元素在数组中出现的次数大于n/2的取整。题目中已经假定所给的数组一定含有元素,且主元素一定存在。一下是一些常用方法:
- 遍历每一个元素,并计数
- 排序法
二、摩尔投票算法:摩尔投票算法的时间和空间都很低,时间复杂度为O(n),空间复杂度为O(1),这也是选择遮盖算法的原因。
摩尔投票算法是一种在线性时间O(n)和线性空间复杂度下,在一个元素序列中,查找出现次数最多的元素;
算法实现
1.定义两个变量:m存储当前变量到的元素,count为计数器,初始情况下,count=0;
2.依次遍历数组中的每个元素,当遍历到元素x时,
如果count == 0,那么m=x,然后将count=1;
如果count != 0,将m与x进行比较,如果相等,count++;如果不等,count--;
3.处理完后,最后m存储的值就是这个序列中最多的元素;
int MajorityVote(vector<int> nums) {
int res = 0, cnt = 0;
for (auto &num : nums) {
if (cnt == 0) {
res = num;
cnt++;
}
else if (num == res)cnt++;
else cnt--;
}
return res;
}
三、摩尔投票算法的改进:
1,题目: LeetCode 229 [Majority Element II]
给定一个整型数组,找到所有主元素,它在数组中的出现次数严格大于数组元素个数的三分之一。算法:每次删除三个不相同的数,最后留下的一定是出现次数超过1/3的数,这个思想可以推广到出现次数超过1/k次的元素有哪些。
因为出现次数大于n/3的元素最多只有两个,所以最开始可以维护两个数字(num1,num2)和两个计数器(counter1,counter2);
遍历数组,当数组中元素和num1或者num2相同,对应的counter1或者counter2加1;
如果counter1或counter2为0,将遍历到的该元素赋给num1或者nums2;
否则counter1和counter2都减1。
C++代码
class Solution {
public:
vector<int> majorityElement(vector<int>& nums) {
vector<int> re;
if (nums.size()==0) return re;
int candidate1 = 0;
int count1 = 0;
int candidate2 = 0;
int count2 = 0;
for (int i=0; i<nums.size(); i++) {
if (nums[i] == nums[candidate1]) count1++;
else if (nums[i] == nums[candidate2]) count2++;
else if (count1==0) {
candidate1 = i;
count1 = 1;
}
else if (count2==0) {
candidate2 = i;
count2 = 1;
}
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
for (int i=0; i<nums.size(); i++) {
if (nums[i] == nums[candidate1]) count1++;
else if (nums[i] == nums[candidate2]) count2++;
}
if (count1 > nums.size()/3) re.push_back(nums[candidate1]);
if (count2 > nums.size()/3) re.push_back(nums[candidate2]);
return re;
}
};
摩尔投票算法( Boyer-Moore Voting Algorithm)的更多相关文章
- Moore majority vote algorithm(摩尔投票算法)
Boyer-Moore majority vote algorithm(摩尔投票算法) 简介 Boyer-Moore majority vote algorithm(摩尔投票算法)是一种在线性时间O( ...
- 洛谷 P2397:yyy loves Maths VI (mode)(摩尔投票算法)
题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 [h1]udp2:第一题因为语 ...
- leetcode 169. Majority Element 多数投票算法(Boyer-Moore Majority Vote algorithm)
题目: Given an array of size n, find the majority element. The majority element is the element that ap ...
- Leetcode Majority Element系列 摩尔投票法
先看一题,洛谷2397: 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 [h ...
- 【Warrior刷题笔记】力扣169. 多数元素 【排序 || 哈希 || 随机算法 || 摩尔投票法】详细注释 不断优化 极致压榨
题目 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/majority-element/ 注意,该题在LC中被标注为easy,所以我们更多应该关 ...
- leetcode 229. Majority Element II(多数投票算法)
就是简单的应用多数投票算法(Boyer–Moore majority vote algorithm),参见这道题的题解. class Solution { public: vector<int& ...
- LeetCode题解-----Majority Element II 摩尔投票法
题目描述: Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The a ...
- luogu P3765 总统选举(线段树维护摩尔投票+平衡树)
这题需要一个黑科技--摩尔投票.这是一个什么东西?一个神奇的方法求一个序列中出现次数大于长度一半的数. 简而言之就是同加异减: 比如有一个代表投票结果的序列. \[[1,2,1,1,2,1,1]\] ...
- Oracle RAC中的投票算法
RAC集群中有三台机器,A,B,C A,B,C都会有3票,假设这是A的心跳线出现问题,整个RAC集群就划分为两个paritition, 一个是只有A的partition,一个是B,C组成的partit ...
随机推荐
- Apache Tomcat 文件包含漏洞(CVE-2020-1938)
2月20日,国家信息安全漏洞共享平台(CNVD)发布了Apache Tomcat文件包含漏洞(CNVD-2020-10487/CVE-2020-1938).该漏洞是由于Tomcat AJP协议存在缺陷 ...
- Oracle学习笔记--Oracle启动过程归纳整理
Oracle 启动过程分为nomount状态mount状态open状态 每个状态下Oracle都会进行不同的操作:1.nomount状态 在$ORACLE_HOME/dbs目录下寻找参数文件 参数文件 ...
- 爬虫之BeautifulSoup类
安装:pip install BeautifulSoup4 下表列出了主要的解析器,以及它们的优缺点:看个人习惯选取自己喜欢的解析方式 # 获取html代码 import requests r = r ...
- requests.exceptions.SSLError报错
requests.exceptions.SSLError: HTTPSConnectionPool(host='www.baidu.com', port=443): Max retries excee ...
- JVM进阶:JVM的监控利器
每次聊起性能测试,最后的终极话题就是怎么做优化.其实在Java的复杂项目中都会有内存不足问题.内存泄露问题.线程死锁问题.CPU问题.这些问题在小压力的情况下有可能并不明显,很容易被忽视.但是真正到了 ...
- python对接elasticsearch的基本操作
基本操作 #!/usr/bin/env python # -*- coding: utf-8 -*- # author tom from elasticsearch import Elasticsea ...
- npm install --save,npm install --save-dev,npm install
react npm install --save 与 npm install --save-dev 的区别以npm安装msbuild为例: nam install msbuild: 会把msbuild ...
- STM32时钟配置方法
一.在STM32中,有五个时钟源,为HSI.HSE.LSI.LSE.PLL. ①HSI是高速内部时钟,RC振荡器,频率为8MHz. ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率 ...
- C# Linq方式生成SAP对接的XML格式内容(一般处理程序 ashx )
Linq生成XML的方法: string CreateXML(string strkey, string strDATAJSON) { XDeclaration dec = new XDeclarat ...
- android studio 导入RecyclerView