E. Paint the Tree

题目大意:给你一棵树,每一个点都可以染k种颜色,你拥有无数种颜色,每一种颜色最多使用2次,如果一条边的两个节点拥有同一种颜色,那么就说

这条边是饱和的,一个树的价值定义为饱和边的权值之和,问一棵树的最大价值是多少。

dp[u][1] 表示这条边用了k种颜色了。

dp[u][0] 表示这条边用了k-1种颜色。

子节点往父亲节点转移的时候,这个转移带有一点点的贪心。

首先因为每一个子节点到父亲节点的这条边要不要都会对后面产生影响。

所以我们可以构造一个模型,dp模型

如果有n个物品,每一个物品有两种选择,A和B,有一个限制就是如果选A,那么选A的数量不能超过k个,然后问选完之后的最大价值,A的价值为a, B的价值为b。

这个就可以用dp来考虑,dp[i][j] 表示前面 i 个选了j个A的最大价值。

当然也可以不dp,可以贪心的考虑,因为所有的B都是可以选择的,所以我们先考虑,选择所有的B,然后考虑,如果要换成A可以增加的差值。

sort排序找前面k大且大于0的差值。

这个题目也是一样的,我们就先选了所有的dp[v][1] 然后如果选这条边,那么差值就是dp[v][0]+w-dp[v][1]

找前面k大且大于0的数之和。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <bitset>
#include <vector>
#include <map>
#include <string>
#include <cstring>
#include <bitset>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=5e5+;
typedef long long ll;
ll dp[maxn][];
int n,k,head[maxn],cnt;
struct node{
int v,w,nxt;
node(int v=,int w=,int nxt=):v(v),w(w),nxt(nxt){}
}ex[maxn*]; void add(int u,int v,int w){
ex[cnt]=node(v,w,head[u]);
head[u]=cnt++;
ex[cnt]=node(u,w,head[v]);
head[v]=cnt++;
}
bool cmp(int a,int b){
return a>b;
} void dfs(int u,int pre){
dp[u][]=dp[u][]=;
for(int i=head[u];i!=-;i=ex[i].nxt){
int v=ex[i].v;
if(v==pre) continue;
dfs(v,u);
dp[u][]+=dp[v][];
dp[u][]+=dp[v][];
}
vector<int>val;val.clear();
for(int i=head[u];i!=-;i=ex[i].nxt){
int v=ex[i].v;
if(v==pre) continue;
val.push_back(dp[v][]+ex[i].w-dp[v][]);
}
sort(val.begin(),val.end(),cmp);
int len=val.size();
len=min(k,len);
for(int i=;i<len;i++){
if(val[i]<) break;
if(i<k-) dp[u][]+=val[i];
dp[u][]+=val[i];
}
} int main(){
int t;
scanf("%d",&t);
while(t--){
cnt=;
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) head[i]=-;
for(int i=;i<n;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
dfs(,-);
printf("%lld\n",max(dp[][],dp[][]));
}
return ;
}

E. Paint the Tree 树形dp的更多相关文章

  1. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  2. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  3. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  4. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  5. hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

    /** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...

  6. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  7. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  8. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

  9. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

随机推荐

  1. AJ学IOS(20)UI之UIPickerView_点菜系统

    AJ分享,必须精品 先看效果图 ## UIPickerView控件 UIPickerView用处: 用来展示很多行(row) 很多列(component )的数据,多用于电子商务的点菜,城市选择等等. ...

  2. 基于linux或windows的c/s的循环服务器求一元二次方程的根

    在linux和windows上实现 c/s模式 socket循环服务器求解一元二次方程的根 ax^2+bx+c=0 根据上式,客户端发送a,b,c给服务器,返回求解的根 暂未考虑非法数据等问题 lin ...

  3. 从前端到后端实现弹幕的过程(jsp/Jquery.barrager.js)

    Jquery.barrager.js插件,可以去网上下载!下载完后,就把下载文件中的js文件.css文件.图片文件.等等等文件全部拷贝到你们自己的项目中去,千万别拷贝漏了,如果你怕拷贝漏了什么,那就把 ...

  4. Salesforce Admin考题解析 | 流程自动化考题与知识点拓展

    [题目1] A record is modified on 1/1/2008. It meets criteria for a time-based workflow rule; this rule ...

  5. Git把本地代码推送到远程github仓库

    运用Git版本控制系统进行代码的管理,以便于团队成员的协作,由于之前是使用svn来进行版本控制,所以对于Git使用还有待熟练掌握.Git与svn类似,个人认为两者之间比较直观的区别就是 Git 不需要 ...

  6. spark 集群优化

    只有满怀自信的人,能在任何地方都怀有自信,沉浸在生活中,并认识自己的意志. 前言 最近公司有一个生产的小集群,专门用于运行spark作业.但是偶尔会因为nn或dn压力过大而导致作业checkpoint ...

  7. python 基础篇 模块化

    在做项目的时候,虽然你不可能把全世界的代码都放到一个文件夹下,但是类似模块化的思想还是要有的--那就是以项目的根目录作为最基本的目录,所有的模块调用,都要通过根目录一层层向下索引的方式来 import ...

  8. 数值计算方法实验之Hermite 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  9. PHP反序列化漏洞总结(二)

    写在前边 之前介绍了什么是序列化和反序列化,顺便演示了一个简单的反序列化漏洞,现在结合实战,开始填坑 前篇:https://www.cnblogs.com/Lee-404/p/12771032.htm ...

  10. 面试题56 - I. 数组中数字出现的次数

    面试题56 - I. 数组中数字出现的次数 一个整型数组 nums 里除两个数字之外,其他数字都出现了两次.请写程序找出这两个只出现一次的数字.要求时间复杂度是O(n),空间复杂度是O(1). 示例 ...