E. Paint the Tree 树形dp
题目大意:给你一棵树,每一个点都可以染k种颜色,你拥有无数种颜色,每一种颜色最多使用2次,如果一条边的两个节点拥有同一种颜色,那么就说
这条边是饱和的,一个树的价值定义为饱和边的权值之和,问一棵树的最大价值是多少。
dp[u][1] 表示这条边用了k种颜色了。
dp[u][0] 表示这条边用了k-1种颜色。
子节点往父亲节点转移的时候,这个转移带有一点点的贪心。
首先因为每一个子节点到父亲节点的这条边要不要都会对后面产生影响。
所以我们可以构造一个模型,dp模型
如果有n个物品,每一个物品有两种选择,A和B,有一个限制就是如果选A,那么选A的数量不能超过k个,然后问选完之后的最大价值,A的价值为a, B的价值为b。
这个就可以用dp来考虑,dp[i][j] 表示前面 i 个选了j个A的最大价值。
当然也可以不dp,可以贪心的考虑,因为所有的B都是可以选择的,所以我们先考虑,选择所有的B,然后考虑,如果要换成A可以增加的差值。
sort排序找前面k大且大于0的差值。
这个题目也是一样的,我们就先选了所有的dp[v][1] 然后如果选这条边,那么差值就是dp[v][0]+w-dp[v][1]
找前面k大且大于0的数之和。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <bitset>
#include <vector>
#include <map>
#include <string>
#include <cstring>
#include <bitset>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=5e5+;
typedef long long ll;
ll dp[maxn][];
int n,k,head[maxn],cnt;
struct node{
int v,w,nxt;
node(int v=,int w=,int nxt=):v(v),w(w),nxt(nxt){}
}ex[maxn*]; void add(int u,int v,int w){
ex[cnt]=node(v,w,head[u]);
head[u]=cnt++;
ex[cnt]=node(u,w,head[v]);
head[v]=cnt++;
}
bool cmp(int a,int b){
return a>b;
} void dfs(int u,int pre){
dp[u][]=dp[u][]=;
for(int i=head[u];i!=-;i=ex[i].nxt){
int v=ex[i].v;
if(v==pre) continue;
dfs(v,u);
dp[u][]+=dp[v][];
dp[u][]+=dp[v][];
}
vector<int>val;val.clear();
for(int i=head[u];i!=-;i=ex[i].nxt){
int v=ex[i].v;
if(v==pre) continue;
val.push_back(dp[v][]+ex[i].w-dp[v][]);
}
sort(val.begin(),val.end(),cmp);
int len=val.size();
len=min(k,len);
for(int i=;i<len;i++){
if(val[i]<) break;
if(i<k-) dp[u][]+=val[i];
dp[u][]+=val[i];
}
} int main(){
int t;
scanf("%d",&t);
while(t--){
cnt=;
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) head[i]=-;
for(int i=;i<n;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
dfs(,-);
printf("%lld\n",max(dp[][],dp[][]));
}
return ;
}
E. Paint the Tree 树形dp的更多相关文章
- 熟练剖分(tree) 树形DP
熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...
- hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)
题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: ...
- CF 461B Appleman and Tree 树形DP
Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...
- codeforces 161D Distance in Tree 树形dp
题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...
- hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。
/** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...
- 5.10 省选模拟赛 tree 树形dp 逆元
LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...
- Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】
题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...
- codeforces Round #263(div2) D. Appleman and Tree 树形dp
题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...
- POJ 2486 Apple Tree(树形DP)
题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...
随机推荐
- Tomcat启动过程原理详解 -- 非常的报错:涉及了2个web.xml等文件的加载流程
Tomcat启动过程原理详解 发表于: Tomcat, Web Server, 旧文存档 | 作者: 谋万世全局者 标签: Tomcat,原理,启动过程,详解 基于Java的Web 应用程序是 ser ...
- Labview 机器视觉IMAQ GetFileInfo函数详解
------------恢复内容开始------------ IMAQ GetFileInfo作用是获取图片文件的信息,包括Calibration(校准).文件类型.水平垂直分辨率.文件数据类型.图像 ...
- PHP函数:debug_backtrace
debug_backtrace() - 产生一条 PHP 的回溯跟踪(backtrace). 说明: debug_backtrace ([ int $options = DEBUG_BACKTRAC ...
- 菜鸡试飞----SRCの信息收集手册
whois信息 微步在线 https://x.threatbook.cn/ 站长之家 http://whois.chinaz.com/ dns信息-----检测是否存在dns域传送漏洞 子域名的收集 ...
- 新增记录txt文档
StringBuilder s = new StringBuilder(); s.Append("[" + dt.Rows[i]["Store"].Conver ...
- pytorch中tensor的属性 类型转换 形状变换 转置 最大值
import torch import numpy as np a = torch.tensor([[[1]]]) #只有一个数据的时候,获取其数值 print(a.item()) #tensor转化 ...
- TokenMismatchException Laravel
随便写写:很久没写了,今天闲的. 1.错误原因:出现这个错误肯定是因为你在Laravel开启了csrf防御,但是你post提交过去的字段中没有生成_token. 2.如果你提交的字段中带有了_toke ...
- 高级数据结构---赫(哈)夫曼树及java代码实现
我们经常会用到文件压缩,压缩之后文件会变小,便于传输,使用的时候又将其解压出来.为什么压缩之后会变小,而且压缩和解压也不会出错.赫夫曼编码和赫夫曼树了解一下. 赫夫曼树: 它是一种的叶子结点带有权重的 ...
- htaccess 一般配置
一.Apache服务器 <IfModule mod_rewrite.c> Options +FollowSymlinks -Multiviews RewriteEngine on Rewr ...
- 免费 https 申请步骤,你必须知道
不适用 https 加密的网站,基本上就等于在裸奔. 来,开始开始动手做 我的系统是 CentOS6 第一步:安装Certbot Certbot可以用于管理(申请.更新.配置.撤销和删除等)Let's ...