不需要 ML/DL 基础,不需要深奥数学背景,初学者和软件开发者也能快速掌握 TensorFlow、掌握人工智能应用的开发秘诀。

以前,吴恩达的机器学习课程和深度学习课程会介绍很多概念与知识,虽然也会有动手实验,但它们主要是为了帮助理解。在这一份 Coursera 新课中,吴恩达与谷歌大脑的 Laurence Moroney 从实践出发介绍了使用 TensorFlow 的正确姿态。

这一个专项课程目前主要包含两门课,即 TensorFlow 简介与 TensorFlow 中的卷积神经网络。第一课目前已经有很多 Coursera 学员留言,他们表示 TensorFlow 简介是一份极好的入门课程(TensorFlow/Keras),除了编程,它还会介绍机器学习与深度学习的基本概念。

  • 课程一:https://www.coursera.org/learn/introduction-tensorflow

  • 课程二:https://www.coursera.org/learn/convolutional-neural-networks-tensorflow

但可能也是因为比较简单,很多学员希望在高级课程中了解更多的 TensorFlow 特性,尤其是 TensorFlow 2.0 的一些开发教程。此外,TensorFlow 中的卷积神经网络课程也今日已经开放注册,它是 TensorFlow 的提升课程。

可能读者最关心的一点是,它到底教的是 TF 1.x 还是 2.0?机器之心在免费注册旁听后发现一些比较吸引人的特点,例如所有练习都是在 Colab 上完成的、代码在 TF 1.x 和 2.0 之间是通用的等。如下图所示为课程练习题页面,代码放在贼好用的 Colab 上都不需要本地计算力。

注意上图是直接导入 TensorFlow,因此当前版本为 1.13.1。不过该课程表示代码足够通用,因此 TF 2.0 alpha 也可以直接使用,只要在导入前先要用 pip 安装 2.0 alpha 就行了。所以说,这个课程介绍的是 TF 1.x 与 2.0。

专项课程简介

如果你是软件开发者,想要试一试深度学习 APP,那么你可以上这门课;如果你是机器学习入门者,除了众多的理论公开课外还想学一学怎样搭个模型,那么这门课可以补足你的动手能力。

这一系列专项课程旨在提供最好的 TensorFlow 实现,我们可以逐步学会如何搭建深度学习模型,并将其应用于实际应用和真实问题中。目前 TensorFlow 仍然是最流行的框架,如果学会了用它做 DL 模型与应用,那么学其它框架就简单多了。

如果你准备搞一搞该系列专项课程,那么你将学习到:

  • 如何用 TensorFlow 构建机器学习模型

  • 如何用全连接网络和卷积神经网络构建图像识别算法

  • 理解如何将模型部署到移动端或网页端

  • 了解图像识别和文本识别外的其他 DL 任务

  • 扩展 TF 基本 API,并用于定制化的学习或训练

总体而言,在第一项课程中,我们将学习到如何用 TensorFlow 构建基本的神经网络,并将其应用到计算机视觉任务中,同时我们也会了解如何用卷积神经网络提升基本网络的性能。在第二项课程中,我们可以学到更多的高级技巧,例如怎样做数据增强、Dropout 及正则化、迁移学习等等。这些模块或技巧能提升标准模型的性能,并打造实用的新应用。

目前这两个课程在 Coursera 上分别都需要花四周完成,每一周大概 4-5 的学时左右。它们都属于 deeplearning.ai 的专项课程,该系列的其它高级主题暂时还没有放出,可能需要过几月才会放出来。

如下所示为第二项课程的前两周课时,我们可以在 Coursera 上免费注册「旁听」,也就是完全获取课程材料,只不过拿不到成绩证明。当然如果想要认真学一学的话,注册每一门课程需要 194 人民币。

背景知识

学习这个专项课程并不要求对 DL 理论有多了解,相反我们需要知道 Python 编程与高中水平的数学基础。因为整个课程主要是面向开发者与初学者,所以 Python 基础还是要好好打的。

学习 Python 编程有很多路径,例如早一段时间的 Python 官方中文文档 ,这里提供几篇 Python(+NumPy)入门文章:

至于其它理论基础,有的话更好,没有的话也没关系。不过从机器学习到深度学习,吴恩达已经为你准备好了全套学习资料。最经典的机器学习课程不必说,肯定是最为优质的入门课程。虽然我们可能会感觉这门课介绍的很多模型在教程或文献中见得比较少,但很多知识点都是 DL 的基本概念。

机器学习:https://www.coursera.org/learn/machine-learning

对于深度学习,吴恩达近来也推出了深度学习专项课程,我们可以在 Coursera 或网易公开课上了解到相关资源。这个月,斯坦福也开放了 CS230 2018 秋季课程的视频,它会和 Coursera 上的深度学习专项课程有一些重叠。不过 CS230 2018 还是有更多的新知识,包括对抗样本或聊天机器人等等。

视频列表:https://www.youtube.com/playlist?list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb

讲师

整个 TensorFlow 系列课程的讲师是吴恩达与谷歌大脑的 Laurence Moroney,前面两课的主讲都是 Laurence Moroney。

吴恩达老师我们都比较熟悉,就不做过多介绍了。另一位讲师 Laurence Moroney 是谷歌的 Developer Advocate,致力于使用 TensorFlow 来开发并构建人工智能相关的应用。他发表了很多编程书籍,现在在视频培训领域与 deeplearning.ai 和 Coursera 展开合作。

此外,Laurence 还是美国科幻作家协会成员,创作了一些科幻小说、剧本和漫画书,包括克里斯蒂安·贝尔主演电影《撕裂的末日》(Equilibrium)的前传。

嗯,确实是很有才了~

专项课程一:TensorFlow 简介

第一个专项课程是关于 TensorFlow 的简介。你会学到如何构建计算机视觉的基础神经网络以及使用卷积改进神经网络。如下是每周的学习主题:

第一周简要介绍机器学习和深度学习,了解它们提供了什么样的新编程范式,为什么又提供一个可以打开新开发场景的工具集。学习这一部分,你只需要了解一些基础的编程技巧。

第二周开始学习使用几行代码来解决计算机视觉问题,并搭建一个简单的视觉模型。

前面搭建的朴素模型确实非常简单,那么在第三周里,我们将学会使用卷积网络处理视觉问题。

如果图像变大了或者特征总是不在同一个地方,怎么办?这个问题的讨论为第四周的学习内容做好准备:处理复杂图像。

专项课程二:TensorFlow 中的卷积神经网络

第二个专项课程主要讲如何改进你在第一个课程中搭建的计算机视觉模型,其中包含一些高级技巧。你将学习如何应对真实世界中形状、大小各异的图像、可视化对图像进行卷积操作的过程,以理解计算机如何「看见」信息、计算损失函数和准确率、探索避免过拟合的策略等。最后,该课程还将介绍迁移学习以及如何从模型中提取学习到的信息。

第一周的课程将从探索一个更大的数据集——猫狗数据集开始,这也是 Kaggle 图像分类挑战赛的赛题之一。

第二周课程的主题是图像增强。增加训练数据可以提高模型的泛化能力,虽然这虽然这并不总是有效的,但我们还是可以选择数据增强来提升模型潜力。在这周的课程中,你将会学到如何调整训练集,以增加其多样性。

第三周的主题是迁移学习。自己构建模型固然很好,但有时会受到手头数据和计算力的限制。并非所有人都掌握着大量的数据和足够的算力,因此我们需要迁移学习。利用迁移学习,你可以直接把别人在大型数据集上训练的模型拿来用,或者只用他们学到的特征。

第四周的主题是多类别分类。之前的课程只讲了二分类,即如何区分马和人、猫和狗等。本周的课程将介绍如何进行多类别分类以及其中涉及的编程知识。

最后,学 TensorFlow 这种实战框架肯定需要大量练习,即便查阅已有的模型代码,我们最好不直接复制粘贴,手写代码也是一种很好的思考过程。

欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/

吴恩达最新TensorFlow专项课程开放注册,你离TF Boy只差这一步的更多相关文章

  1. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  2. 机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/

    机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave    开源  MatLab http://www.ai-start.com/ https://zhuanlan.zhihu ...

  3. 吴恩达《机器学习》课程总结(5)_logistic回归

    Q1分类问题 回归问题的输出可能是很大的数,而在分类问题中,比如二分类,希望输出的值是0或1,如何将回归输出的值转换成分类的输出0,1成为关键.注意logistics回归又称 逻辑回归,但他是分类问题 ...

  4. 吴恩达《机器学习》课程笔记——第七章:Logistic回归

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 7.1 分类问题 本节内容:什么是分类 之前的章节介绍的都是回归问题,接下来是分类问题.所谓的分类问题是指输出变量为有限个离散 ...

  5. 吴恩达《机器学习》课程总结(18)_照片OCR

    18.1问题描述和流程图 (1)图像文字识别是从给定的一张图片中识别文字. (2)流程包括: 1.文字侦测 2.字符切分(现在不需要切分了) 3.字符分类 18.2滑动窗口 在行人检测中,滑动窗口是首 ...

  6. ML:吴恩达 机器学习 课程笔记(Week1~2)

    吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...

  7. [C0] 人工智能大师访谈 by 吴恩达

    人工智能大师访谈 by 吴恩达 吴恩达采访 Geoffery Hinton Geoffery Hinton主要观点:要阅读文献,但不要读太多,绝对不要停止编程. Geoffrey Hinton:谢谢你 ...

  8. 【吴恩达课程使用】anaconda (python 3.7) win10安装 tensorflow 1.8 cpu版

    [吴恩达课程使用]anaconda (python 3.7) win10安装 tensorflow 1.8 目前tensorflow是只支持到python3.6的,anaconda最新版本已经到pyt ...

  9. 【吴恩达课程使用】keras cpu版安装【接】- anaconda (python 3.7) win10安装 tensorflow 1.8 cpu版

    一.确认tensorflow的版本: 接上一条tensorflow的安装,注意版本不匹配会出现很多问题!:[吴恩达课程使用]anaconda (python 3.7) win10安装 tensorfl ...

随机推荐

  1. Flutter跨平台框架的使用-iOS最新版

    科技引领我们前行 [前言] 1:先简单的介绍下Flutter,它是一款跨平台应用SDK,高性能跨平台实现方案(暂时讨论iOS和Android), 它不同于RN,少了像RN的JS中间桥接层,所以它的性能 ...

  2. Pom.xml的依赖自动生成

    1.第一种用引入jar包的方法 网盘链接:https://pan.baidu.com/s/10HNjNeZc1d5QrFNtvLPWBA 提取码:oako 以上是整个文件直接用idea打开即可 imp ...

  3. 一行python代码搞定文件分享

    给同事分享文件,如你所知通过聊天工具,网盘或linux命令各种方法,还有一个也可以尝试下:使用一行python代码快速搭建一个http服务器在局域网内进行下载. python3使用: python3 ...

  4. pip安装psycopg2失败解决

    pip install psycopg2==2.8.4报错ERROR: Command "python setup.py egg_info" failed with error c ...

  5. 沙雕与大婶 | Mock调你的外部依赖吧

    故事背景: 沙雕在公司负责API项目的开发,很认真负责,经常加班加点赶进度,却常常被老板吐槽说他开发效率太低,他自己也很委屈,因为他所负责的项目常常依赖大量外部系统,他只好等对方开发完才一个个对接,开 ...

  6. 正式学习MVC 02

    1.cookie 继续讲解MVC的内置对象cookie 相对不安全 1)保存cookie public ActionResult Index() { // 设置cookie以及过期时间 Respons ...

  7. eslint webpack2 vue-loader配置

    eslint是一个代码检测工具 官网如下http://eslint.cn/ npm install eslint --save-dev 需要这几个npm包: eslint eslint-loader ...

  8. 《javascript高级程序设计》笔记:文档模式

    文档模式是用于指定浏览器使用什么样的标准来正确的显示网页,各个标准的解析存在着差异 文档类型的分类 文档模式大致分为三种类型: 混杂模式(quirks mode) 标准模式(standards mod ...

  9. OpenGL 实践之贝塞尔曲线绘制

    说到贝塞尔曲线,大家肯定都不陌生,网上有很多关于介绍和理解贝塞尔曲线的优秀文章和动态图. 以下两个是比较经典的动图了. 二阶贝塞尔曲线: 三阶贝塞尔曲线: 由于在工作中经常要和贝塞尔曲线打交道,所以简 ...

  10. BeetleX.FastHttpApi之测试插件集成

    说到Webapi测试工具相信很多人想起Swagger,它可以非常方便地集成到项目中并进行项目Webapi接口测试.而BeetleX.FastHttpApi在新版本中也提供类似的插件,只需要引用这个插件 ...