[bzoj1924]P2403 [SDOI2010]所驼门王的宝藏
tarjan+DAG 上的 dp
难点在于建图和连边,其实也不难,就是细节挺恶心
我和正解对拍拍出来 3 个错误。。。
题目描述
有座宫殿呈矩阵状,由 \(R\times C\) 间矩形宫室组成,其中有 \(N\) 间宫室里埋藏着宝藏,称作藏宝宫室。宫殿里外、相邻宫室间都由坚硬的实体墙阻隔,由一间宫室到达另一间只能通过传送门。这 \(N\) 间藏宝宫室每间都架设了一扇传送门,没有宝藏的宫室不设传送门,所有的宫室传送门分为三种:
- “横天门”:由该门可以传送到同行的任一宫室;
- “纵寰门”:由该门可以传送到同列的任一宫室;
- “任意门”:由该门可以传送到以该门所在宫室为中心周围 \(8\) 格中任一宫室(如果目标宫室存在的话)。
初始时,可以由任意一间藏宝宫室进入,并由任意一间藏宝宫室离开,但只能进入离开一次
输入格式
第一行给出三个正整数 \(N,R,C\)。
以下 \(N\) 行,每行给出一扇传送门的信息,包含三个正整数 \(x_i, y_i, T_i\),表示该传送门设在位于第 \(x_i\) 行第 \(y_i\) 列的藏宝宫室,类型为 \(T_i\)。\(T_i\) 是一个 \([1,3]\) 间的整数,\(1\) 表示可以传送到第 \(x_i\) 行任意一列的“横天门”,\(2\) 表示可以传送到任意一行第 \(y_i\) 列的“纵寰门”,\(3\) 表示可以传送到周围 \(8\) 格宫室的“任意门”。
保证 \(1\le x_i\le R,1\le y_i\le C\),所有的传送门位置互不相同。
输出格式
只有一个正整数,表示你确定的路线所经过不同藏宝宫室的最大数目。
对于每一个强连通分量,只要到达它中的一个点,剩下的点就都可以到达
所以我们只要 tarjan 缩点以后,按照每个强连通分量间的边的关系,重新连边,然后这个就是一个 DAG
这个 DAG 上的每个点的点权,就可以理解为对应的强连通分量的大小,也就是走到这个强连通分量能对答案产生多大贡献
然后做个简单的 dp 就好了,用 \(f_i\) 表示第 \(i\) 个点(DAG 上的)结尾,最多可以产生多大的答案
最终答案就是 \(\max_{i=1}^{scccnt} f_i\),其中,\(scccnt\) 当然就是强连通分量的个数
同时也是新建的 DAG 的点数
现在考虑如何连边,直接连肯定T飞
对于每一行,所以类型为 \(1\) 的点(横着的门),可以连一个环,这样保证了从任意一个横着的门进入,都能去往同一行的其它所有类型为 \(1\) 的门
然后对于类型不是 \(1\) 的门,随便找一个类型是 \(1\) 的门,向它们连边,保证了从任意一个横着的门,都可以去往同一行中,不是类型 \(1\) 的门
就符合要求了
具体实现要先对所以门排序,然后按照每一行枚举
细节比较多,具体看代码中的注释
那么对于每一列也是如此
对于那种“任意门”更简单那了,用 map
记录每个位置是不是藏宝宫室,如果是就连边就行了
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<map>
#include<utility>
#include<iomanip>
#include<queue>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
register int x=0;register int y=1;
register char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
#define N 100006
#define M 1000006
struct data{
int x,y,id,type;
}p[N];
int have_1[1000006],have_2[1000006];
int fir[N],nex[M],to[M],tot;
int fir_[N],nex_[M],to_[M],tot_;
std::map<std::pair<int,int>,int>map;
int dfn[N],low[N],dfscnt;
int scc[N],size[N],scccnt;
int stack[N],top;
int in[N];
void debug(){
int a;
return;
}
inline void add(int u,int v){
if(u==4&&v==1) debug();
to[++tot]=v;
nex[tot]=fir[u];fir[u]=tot;
}
inline void add_(int u,int v){
to_[++tot_]=v;
nex_[tot_]=fir_[u];fir_[u]=tot_;
}
inline int cmpx(data x,data y){
if(x.x==y.x) return x.type<y.type;//横在前
return x.x<y.x;
}
inline int cmpy(data x,data y){
if(x.y==y.y) return x.type>y.type;
return x.y<y.y;
}
void tarjan(int u){
dfn[u]=low[u]=++dfscnt;stack[top++]=u;
for(reg int v,i=fir[u];i;i=nex[i]){
v=to[i];
if(!dfn[v]){
tarjan(v);low[u]=std::min(low[u],low[v]);
}
else if(!scc[v]) low[u]=std::min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
scccnt++;
do{
size[scccnt]++;scc[stack[--top]]=scccnt;
}while(stack[top]!=u);
}
}
inline void build(){
std::sort(p+1,p+1+n,cmpx);
for(reg int i=1;i<=n;){
if(!have_1[p[i].x]){
//如果这一行没有 1 类型的门(横的门),那么这一行内肯定不会有连边
//这里如果不特判后面会出问题,在这一行一个 1 的门都没有的情况下
int now_x=p[i].x;
for(i++;p[i].x==now_x;i++);
continue;
}
int now_x=p[i].x,now=p[i].id;
int last_i=i;//last_i 是环中第一个点,同时我门也选这个点,向其它类型不是 1 的门连边
for(i++;p[i].x==now_x&&p[i].type==1&&i<=n;i++) add(p[i-1].id,p[i].id);//横的连成环
add(p[i-1].id,p[last_i].id);//连回去,才能构成一个环
for(;p[i].x==now_x&&i<=n;i++) add(now,p[i].id);
}
std::sort(p+1,p+1+n,cmpy);
for(reg int i=1;i<=n;){
if(!have_2[p[i].y]){//同理
int now_y=p[i].y;
for(i++;p[i].y==now_y;i++);
continue;
}
int now_y=p[i].y,tmp=i;//记录这一列是从哪标号开始的
for(;p[i].y==now_y&&i<=n&&p[i].type==3;i++);
int now=p[i].id,last_i=i;//last_i 是环中第一个点,now 即为我门选取的那个类型为 2 的门,从他向其它类型不为 2 的门连边
for(i++;p[i].y==now_y&&i<=n&&p[i].type==2;i++) add(p[i-1].id,p[i].id);//同理,纵的连成环
add(p[i-1].id,p[last_i].id);//连回去,才能构成一个环
for(;p[i].y==now_y&&i<=n;i++) add(now,p[i].id);
for(reg int j=tmp;p[j].y==now_y&&j<=n&&p[j].type==3;j++) add(now,p[j].id);
//上面一行这是类型是 3 的门,因为排序时把他们放在了最前面,所以先记录下起始点,要在确定了一个类型 2 的门以后再重新从起始点开始循环,连边
}
}
const int dx[8]={0,0,1,1,1,-1,-1,-1};
const int dy[8]={-1,1,-1,0,1,-1,0,1};
inline void build_8(){
std::pair<int,int>pair;
for(reg int i=1;i<=n;i++)if(p[i].type==3){
reg int x=p[i].x,y=p[i].y,id=p[i].id,x_,y_;
for(reg int k=0;k<8;k++){
x_=x+dx[k];y_=y+dy[k];
pair=std::make_pair(x_,y_);
if(map.find(pair)!=map.end()) add(id,map[pair]);
}
}
}
inline void rebuild(){
for(reg int i=1;i<=n;i++)
for(reg int j=fir[i];j;j=nex[j])if(scc[i]!=scc[to[j]])
add_(scc[i],scc[to[j]]),in[scc[to[j]]]++;
}
std::queue<int>q;
int f[100006];
inline void topo(){
for(reg int i=1;i<=scccnt;i++)if(!in[i])
q.push(i),f[i]=size[i];
reg int u,v;
while(!q.empty()){
u=q.front();q.pop();
for(reg int i=fir_[u];i;i=nex_[i]){
v=to_[i];
f[v]=std::max(f[v],f[u]);
if(!--in[v]) f[v]+=size[v],q.push(v);
}
}
}
int main(){
// std::freopen("1.in","r",stdin);
n=read();read();read();
for(reg int i=1;i<=n;i++){
p[i].x=read();p[i].y=read();p[i].type=read();p[i].id=i;
map[std::make_pair(p[i].x,p[i].y)]=i;
if(p[i].type==1) have_1[p[i].x]=1;
if(p[i].type==2) have_2[p[i].y]=1;
}
build();build_8();
for(reg int i=1;i<=n;i++)if(!dfn[i]) tarjan(i);
rebuild();
topo();
reg int ans=0;
for(reg int i=1;i<=scccnt;i++) ans=std::max(ans,f[i]);
std::printf("%d",ans);
// EN;EN;EN;
// for(reg int i=1;i<=n;i++){
// std::printf("%d : ",i);
// for(reg int j=fir[i];j;j=nex[j]) std::printf("%d ",to[j]);
// EN;
// }
// for(reg int i=1;i<=n;i++) std::printf("%d ",scc[i]);EN;
// std::puts("new : ");
// for(reg int i=1;i<=n;i++){
// std::printf("%d : ",i);
// for(reg int j=fir_[i];j;j=nex_[j]) std::printf("%d ",to_[j]);
// EN;
// }
return 0;
}
[bzoj1924]P2403 [SDOI2010]所驼门王的宝藏的更多相关文章
- Luogu P2403 [SDOI2010]所驼门王的宝藏
比较显然的缩点+拓扑排序题,只不过要建虚点优化建边. 首先我们发现在一个SCC里的点都是可以一起对答案产生贡献的,因此先缩成DAG,然后拓扑找最长链. 但是我们发现这题最坏情况下边数会达到恐怖的\(O ...
- 洛咕 P2403 [SDOI2010]所驼门王的宝藏
简单tarjan. 一行的横天门如果暴力连边会被卡成平方,所以只要相邻两个横天门连双向边,再随便选一个横天门向整行连边即可.纵寰门同理.ziyou门直接map暴力连边. 然后tarjan直接dp. / ...
- BZOJ 1924 && Luogu P2403 [SDOI2010]所驼门王的宝藏 恶心建图+缩点DP
记住:map一定要这么用: if(mp[x[i]+dx[j]].find(y[i]+dy[j])!=mp[x[i]+dx[j]].end()) add(i,mp[x[i]+dx[j]][y[i]+dy ...
- 洛谷 P2403 [SDOI2010]所驼门王的宝藏 题解
题目描述 分析 先放一张图便于理解 这一道题如果暴力建图会被卡成\(n^{2}\) 实际上,在我们暴力建图的时候,有很多边都是重复的 假如一行当中有许多横天门的话,我们就不必要把这一行当中的所有点和每 ...
- [BZOJ 1924][Sdoi2010]所驼门王的宝藏
1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1285 Solved: 574[Submit][Sta ...
- 【题解】SDOI2010所驼门王的宝藏(强连通分量+优化建图)
[题解]SDOI2010所驼门王的宝藏(强连通分量+优化建图) 最开始我想写线段树优化建图的说,数据结构学傻了233 虽然矩阵很大,但是没什么用,真正有用的是那些关键点 考虑关键点的类型: 横走型 竖 ...
- [SDOI2010]所驼门王的宝藏
题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...
- [LuoguP2403][SDOI2010]所驼门王的宝藏
题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...
- BZOJ 1924: [Sdoi2010]所驼门王的宝藏 【tarjan】
Description 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先 知”的Alpaca L. Sotomon 是这个家族的领袖,外人也称其为“所驼门王”.所 驼门王毕生致力于维 ...
随机推荐
- 33.2 案例:输出指定目录下的所有java文件名(包含子目录)
package day32_file_文件和目录操作; import java.io.File; public class test_输出指定目录下所有的java文件名 { public static ...
- winform怎么实现财务上凭证录入和打印
序言 现如今存在的财务软件层出不穷,怎么样让自己的业务系统与财务系统相结合,往往是很多公司头痛的问题.大多数公司也没有这个能力都去开发一套属于自己的财务软件,所以只有对接像金蝶用友这类的财务软件,花费 ...
- 使用ffprobe 查询wav文件信息
使用ffprobe 查询wav文件信息 安装 安装过程和ffmepg相同不在赘述 不带参数查询文件信息 ffprobe ZH_biaobei_标准合成_甜美女声_楠楠_5_5_5_6_1_4047db ...
- qad progress数据库启动出错解决
1. 启动时报:SYSTEM ERROR: Wrong dbkey in block. Found 0, should be 6342528 in area 36. (439) ** Save fi ...
- 用Python绘制全球疫情变化地图
目前全球疫情仍然比较严重,为了能清晰地看到疫情爆发以来至现在全球疫情的变化趋势,我绘制了一张疫情变化地图,完整代码共 230 行,需要的朋友在公众号回复关键字 疫情地图 即可. 废话不多说,先上图 下 ...
- Delphi 文件操作(4)Reset
procedure Reset(var F [: File; RecSize: Word ] ); { 作用: 对于文本文件,Reset过程将以只读方式打开文件,对于类型文件和无类型文件, ...
- Spring Boot 集成 Spring Security 入门案例教程
前言 本文作为入门级的DEMO,完全按照官网实例演示: 项目目录结构 Maven 依赖 <parent> <groupId>org.springframework.boot&l ...
- B - Raising Modulo Numbers
People are different. Some secretly read magazines full of interesting girls' pictures, others creat ...
- . Number throry
steve 学完了快速幂,现在会他快速的计算:(ij)%d , Alex 作为一个数学大师,给了 steve 一个问题:已知i∈[1,n],j∈[1,m] ,计算满足 (ij)%d=0 的 (i,j) ...
- 再接再厉,JSONViewer现已支持Firefox、Microsoft Edge、360浏览器,可能是最好用的JSON格式化工具
之前写的JSONViewer,截至目前在谷歌商店里已经有1000+的自然下载量了 为什么开发JSONViewer? 日常开发中,拿到接口输出的JSON一般会去在线的JSON格式化网站查看,但是在线格式 ...