TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter
learning_rate = 0.001
training_epochs = 20
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28像素即784个特征值) #tf Graph input(only pictures)
X=tf.placeholder("float", [None,n_input]) # hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2 weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_3])),
'encoder_h4': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_4])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_4,n_hidden_3])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_2])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h4': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
} def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 #定义decoder
def decoder(x):
# Decoder Hidden layer with sigmoid activation #2
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4 # Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features # Prediction
y_pred = decoder_op #After
# Targets (Labels) are the input data.
y_true = X #Before cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess: sess.run(tf.global_variables_initializer())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!") encode_result = sess.run(encoder_op,feed_dict={X:mnist.test.images})
plt.scatter(encode_result[:,0],encode_result[:,1],c=mnist.test.labels)
plt.title('Matplotlib,AE,classification--Jason Niu')
plt.show()

TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu的更多相关文章
- TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from t ...
- TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据—Jason niu
import tensorflow as tf import numpy as np W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.fl ...
- TF:利用sklearn自带数据集使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线—Jason niu
import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation impo ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
- TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例—Jason niu
import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function ...
- TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable—Jason niu
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import te ...
- TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
随机推荐
- jQuery对url的操作
// 修改URL中指定参数的值 function changeURLArg(url,arg,arg_val){ var pattern=arg+'=([^&]*)'; var replaceT ...
- java怎样将一组对象传入Oracle存储过程
注:本文来源 < java怎样将一组对象传入Oracle存储过程 > java怎样将一组对象传入Oracle存储过程 java怎样将一组对象传入Oracle存储过程.须要注意的是jar ...
- SpringBoot的yml配置文件
1.在src\main\resources下创建application.yml配置文件 spring: datasource: driver-class-name: com.mysql.jdbc.Dr ...
- Win#password;;processon #clone;;disassemble;;source find
1.密码学思维导图 源地址:https://www.processon.com/view/5a61d825e4b0c090524f5b8b 在这之前给大家分享 如何在 processon上搜索公开克隆 ...
- 性能测试五十:Jmeter+Influxdb+Grafana实时数据展示系统搭建
如果用生成jtl文件再分析结果的方式的话,每一次请求就会往jtl里面写一条数据,在进行长时间的稳定性测试的时候,特别是当TPS很高的时候,写入的数据会非常的大,这个时候等稳定性测试完成,再对jtl进行 ...
- linux安装MongoDB
安装 32bit的mongodb最大只能存放2G的数据,64bit就没有限制 到官网,选择合适的版本下载,本次下载3.4.0版本 解压 tar -zxvf mongodb-linux-x86_64-u ...
- C++ Primer 笔记——命名空间
1.我们既可以用 using 声明整个空间,也可以声明部分名字. using namespace std; using std::cout; 2.头文件不应包含 using 声明,因为头文件会拷贝到所 ...
- 优先选择nullptr而不是0和NULL
我们知道:0是一个int,而不是一个指针.如果C++在一个只有指针才能够使用的上下文中发现它只有一个0,那么它会勉强将0解释成空指针,但那时一种倒退行为.C++的主要方针是0就是一个int,而不是指针 ...
- Reading Refs
有时候看论文时会有一种发现“新大陆”的感觉......也许这就是科研魅力之一!
- MyBatis - 6.Spring整合MyBatis
1.查看不同MyBatis版本整合Spring时使用的适配包: http://www.mybatis.org/spring/ 2.下载整合适配包 https://github.com/mybatis/ ...