TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter
learning_rate = 0.001
training_epochs = 20
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28像素即784个特征值) #tf Graph input(only pictures)
X=tf.placeholder("float", [None,n_input]) # hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2 weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_3])),
'encoder_h4': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_4])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_4,n_hidden_3])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_2])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h4': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
} def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 #定义decoder
def decoder(x):
# Decoder Hidden layer with sigmoid activation #2
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4 # Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features # Prediction
y_pred = decoder_op #After
# Targets (Labels) are the input data.
y_true = X #Before cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess: sess.run(tf.global_variables_initializer())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!") encode_result = sess.run(encoder_op,feed_dict={X:mnist.test.images})
plt.scatter(encode_result[:,0],encode_result[:,1],c=mnist.test.labels)
plt.title('Matplotlib,AE,classification--Jason Niu')
plt.show()
TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu的更多相关文章
- TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from t ...
- TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据—Jason niu
import tensorflow as tf import numpy as np W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.fl ...
- TF:利用sklearn自带数据集使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线—Jason niu
import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation impo ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
- TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例—Jason niu
import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function ...
- TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable—Jason niu
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import te ...
- TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
随机推荐
- Winform中的TextBox的小技巧
1 一些常用属性this.textBox5.PasswordChar = '@'; //密码的样式 this.textBox5.UseSystemPasswordChar = ...
- 锤子科技"临死前"被"接盘" ,内部人士爆料已改签今日头条母公司
就在昨天,据据锤子科技内部人士透露,部分锤子科技员工在昨天已经接到了相关的临时通知,要求改签劳动合同至今日头条的母公司——字节跳动.至于这是锤子科技真正再度复活还是借尸还魂都不重要,重要的是,作为忠实 ...
- Windows下Oracle 11g安装以及创建数据库
安装数据库 事实上Oracle安装 1.安装准备 Oracle的安装包下载以后是两个压缩包,同时选中两个压缩包右击进行解压 2.解压完成如下图所示 3.双击 setup.exe 文件进行安装,会弹出以 ...
- JSTL 标准标签库 (JavaServer Pages Standard Tag library, JSTL)
JSP标准标签库(JavaServer Pages Standard Tag Library,JSTL)是一个定制标签库的集合,用来解决 像遍历Map或集合.条件测试.XML处理,甚至数据 库访问和数 ...
- 波哥博客Url
http://www.cnblogs.com/whatlonelytear/
- 10进制 VS 2进制
10进制 VS 2进制 时间限制: 1 Sec 内存限制: 32 MB 题目描述 样例输出 623 #include<stdio.h> #include<string.h> ...
- 集腋成裘-06-angularJS -angular_02
1.0 选项卡 其中涉及到了三目运算符号; <!DOCTYPE html> <html ng-app="test"> <head> <me ...
- 集腋成裘-05-angularJS -初识angular
私以为angular的最大特点是:只关注数据 1.1 angular之:双向绑定 <!DOCTYPE html> <html ng-app=""> < ...
- python 装饰器(1)
# 装饰器,对一个函数打扮 # def foo():# print("foo")# foo# foo()# def test1():# print('-----1-----')# ...
- 20165323 实验一 Java开发环境的熟悉
一.实验报告封面 课程:Java程序设计 班级:1653班 姓名:杨金川 学号:20165323 指导教师:娄嘉鹏 实验日期:2018年4月2日 实验时间:13:45 - 15:25 实验序号:一 实 ...