51Nod1518 稳定多米诺覆盖 动态规划 插头dp 容斥原理
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1518.html
题目传送门 - 51Nod1518
题意

51Nod真是个好OJ ,题意概括的真好,有助于博主偷懒不写题意概括。给51Nod 点赞!
题解
首先,我们忽略那个“稳定”的要求,求方案数。
显然是一个插头dp裸题,我们可以在 $O(n^2\cdot 2^n)$ 的时间复杂度中求出所有长宽的矩形区域的覆盖方案数。
然后我们考虑容斥原理,奇加偶减。首先,枚举哪些相邻行之间有一条不穿过骨牌的直线,然后,用一个 $O(n)$ DP 来解决相邻列之间分割线的容斥。
总的时间复杂度 $O(n^22^n)$ 。打出表之后,询问 $O(1)$ 。
代码
看着那些运行效率榜上15MS的代码我于是交了一份 0MS 的代码。正常的代码在这份代码之后。
#include <bits/stdc++.h>
int n,m,ans[17][17]={
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,6,0,108,0,1182,0,10338,0,79818,0,570342},
{0,0,0,0,0,6,0,124,62,1646,1630,18120,25654,180288,317338,1684956,3416994},
{0,0,0,0,0,0,124,0,13514,0,765182,0,32046702,0,136189727,0,378354090},
{0,0,0,0,0,108,62,13514,25506,991186,3103578,57718190,238225406,965022920,388537910,937145938,315565230},
{0,0,0,0,0,0,1646,0,991186,0,262834138,0,462717719,0,560132342,0,699538539},
{0,0,0,0,0,1182,1630,765182,3103578,262834138,759280991,264577134,712492587,886997066,577689269,510014880,807555438},
{0,0,0,0,0,0,18120,0,57718190,0,264577134,0,759141342,0,567660301,0,47051173},
{0,0,0,0,0,10338,25654,32046702,238225406,462717719,712492587,759141342,398579168,83006813,821419653,942235780,558077885},
{0,0,0,0,0,0,180288,0,965022920,0,886997066,0,83006813,0,690415372,0,620388364},
{0,0,0,0,0,79818,317338,136189727,388537910,560132342,577689269,567660301,821419653,690415372,796514774,696587391,175421667},
{0,0,0,0,0,0,1684956,0,937145938,0,510014880,0,942235780,0,696587391,0,856463275},
{0,0,0,0,0,570342,3416994,378354090,315565230,699538539,807555438,47051173,558077885,620388364,175421667,856463275,341279366}
};
int main(){
while (~scanf("%d%d",&n,&m))
printf("%d\n",ans[n][m]);
return 0;
}
正常的代码
#include <bits/stdc++.h>
using namespace std;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
const int N=17,S=1<<16,mod=1e9+7;
int n,m,dp[2][S],tot[N][N],ans[N][N];
int gbit(int v,int d){
return (v>>(d-1))&1;
}
void Solve_tot(int n,int m){
memset(dp,0,sizeof dp);
int T0=1,T1=0;
dp[T1][(1<<m)-1]=1;
for (int i=1;i<=n;i++){
for (int j=1;j<=m;j++){
T0^=1,T1^=1;
memset(dp[T1],0,sizeof dp[T1]);
for (int s=0;s<(1<<m);s++){
int v=dp[T0][s];
if (!v)
continue;
dp[T1][s^(1<<(j-1))]=(dp[T1][s^(1<<(j-1))]+v)%mod;
if (j>1&&!gbit(s,j-1)&&gbit(s,j)){
int _s=s^(1<<(j-2));
dp[T1][_s]=(dp[T1][_s]+v)%mod;
}
}
}
tot[i][m]=dp[T1][(1<<m)-1];
}
}
void Get_tot(int n){
for (int m=1;m<=16;m++)
Solve_tot(n,m);
}
int GetV(int n,int s,int len){
int v=1;
for (int i=1,j;i<=n;i=j){
for (j=i;j<n&&!((s>>j)&1);j++);
j++;
v=1LL*v*tot[j-i][len]%mod;
}
return v;
}
int cnt_1(int v){
int ans=0;
while (v)
ans+=v&1,v>>=1;
return ans;
}
void Solve_ans(int n,int m){
int dp[N],v[N];
for (int s=0;s<(1<<n);s++){
if (!(s&1))
continue;
memset(dp,0,sizeof dp);
for (int i=1;i<=m;i++)
v[i]=GetV(n,s,i);
dp[0]=1;
for (int i=1;i<=m;i++)
for (int j=0;j<i;j++)
dp[i]=(-1LL*dp[j]*v[i-j]+dp[i])%mod;
int f=(cnt_1(s)&1)?-1:1;
for (int i=1;i<=m;i++)
ans[n][i]=(ans[n][i]+f*dp[i])%mod;
}
}
void Get_ans(int m){
memset(ans,0,sizeof ans);
for (int n=1;n<=16;n++)
Solve_ans(n,m);
for (int i=1;i<=m;i++)
for (int j=1;j<=m;j++)
ans[i][j]=(ans[i][j]+mod)%mod;
}
int main(){
Get_tot(16);
Get_ans(16);
while (~scanf("%d%d",&n,&m))
printf("%d\n",ans[n][m]);
return 0;
}
51Nod1518 稳定多米诺覆盖 动态规划 插头dp 容斥原理的更多相关文章
- 【做题】51NOD1518 稳定多米诺覆盖——容斥&dp
题意:求有多少种方案,用多米诺骨牌覆盖一个\(n\times m\)的棋盘,满足任意一对相邻行和列都至少有一个骨牌横跨.对\(10^9+7\)取模. \(n,m \leq 16\) 首先,这个问题的约 ...
- 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)
[传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...
- P1282 多米诺骨牌 (差值DP+背包)
题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...
- bzoj1814: Ural 1519 Formula 1 动态规划 插头dp
http://acm.timus.ru/problem.aspx?space=1&num=1519 题目描述 一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数. ...
- 洛谷P1282 多米诺骨牌【线性dp】
题目:https://www.luogu.org/problemnew/show/P1282 题意: 给定n个牌,每个牌有一个上点数和下点数.可以通过旋转改变交换上下点数. 问使得上点数之和和下点数之 ...
- ACM - 动态规划 - P1282 多米诺骨牌
多米诺骨牌由上下 \(2\) 个方块组成,每个方块中有 \(1 \sim 6\) 个点.现有排成行的上方块中点数之和记为 \(S_1\),下方块中点数之和记为 \(S_2\),它们的差为 \(\lef ...
- 用1 x 2的多米诺骨牌填满M x N矩形的方案数(完美覆盖)
题意 用 $1 \times 2$ 的多米诺骨牌填满 $M \times N$ 的矩形有多少种方案,$M \leq 5,N < 2^{31}$,输出答案模 $p$. 分析 当 $M=3$时,假设 ...
- Luogu P2595 [ZJOI2009]多米诺骨牌 容斥,枚举,插头dp,轮廓线dp
真的是个好(毒)题(瘤).其中枚举的思想尤其值得借鉴. \(40pts\):插头\(dp\),记录插头的同时记录每一列的连接状况,复杂度\(O(N*M*2^{n + m} )\). \(100pts\ ...
- [CareerCup] 6.2 Dominos on Chess Board 棋盘上的多米诺
6.2 There is an 8x8 chess board in which two diagonally opposite corners have been cut off. You are ...
随机推荐
- mysql生成数据字典
git clone https://github.com/twindb/undrop-for-innodb.git make [root@redis01 undrop-for-innodb]# mak ...
- js用replaceAll全部替换的方法
1 前言 js中字符串整体替换,只有自带的replace,并没有replaceAll,如果我们需要把字符串中的字符统一替换,可以用正则表达式,由于经常使用就在String直接加个原生方法,方便调用. ...
- python PIL实现图片合成
在项目中需要将两张图片合在一起.遇到两种情况,一种就是两张非透明图片的合成, 一种是涉及到透明png的合成. 相关API见 http://pillow.readthedocs.io/en/latest ...
- react.css
/* KISSY CSS Reset 理念:清除和重置是紧密不可分的 特色:1.适应中文 2.基于最新主流浏览器 维护:玉伯(lifesinger@gmail.com), 正淳(ragecarrier ...
- μCUnit,微控制器的单元测试框架
在MCU on Eclipse网站上看到Erich Styger在8月26日发布的博文,一篇关于微控制器单元测试的文章,有很高的参考价值,特将其翻译过来以备学习.原文网址:https://mcuone ...
- 【JS】中ajax的URL中包含中文,后台接收乱码
[问题]ajax提交get请求,url中参数包含中文,后台接收到显示乱码. [解决方案]前台: function getSiteInfoByName(siteName){ var res; $.aja ...
- Java编制至今总结和学习报告
日期:2018.8.19 星期日 博客期:006 说个事,本来想把博客园做一个交流平台的,可是交流度有点少...嗯...我看我还是把这个平台当作经验传授平台和自己的作品发布平台吧!Java的知识详解, ...
- Rational Rose 2007下载、安装和破解
一.文件下载 (1)DAEMON Tools Lite(虚拟光驱)下载地址 链接:https://pan.baidu.com/s/19L1FT6T1MlyhkfXyobd26A 提取码:drfs (2 ...
- python --------------网络(socket)编程
一.网络协议 客户端/服务器架构 1.硬件C/S架构(打印机) 2.软件C/S架构(互联网中处处是C/S架构):B/S架构也是C/S架构的一种,B/S是浏览器/服务器 C/S架构与socket的关系: ...
- bzoj 2190
题意:求 题解:这题...数据范围是真小... 研究一下这一表达式,发现gcd(i,j)=1表示i,j互质,那么互质肯定能想到欧拉函数,可是欧拉函数要求j<i,那么我们变化一下:显然原矩阵是对称 ...