原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1518.html

题目传送门 - 51Nod1518

题意

51Nod真是个好OJ ,题意概括的真好,有助于博主偷懒不写题意概括。给51Nod 点赞!

题解

  首先,我们忽略那个“稳定”的要求,求方案数。

  显然是一个插头dp裸题,我们可以在 $O(n^2\cdot 2^n)$ 的时间复杂度中求出所有长宽的矩形区域的覆盖方案数。

  然后我们考虑容斥原理,奇加偶减。首先,枚举哪些相邻行之间有一条不穿过骨牌的直线,然后,用一个 $O(n)$ DP 来解决相邻列之间分割线的容斥。

  总的时间复杂度 $O(n^22^n)$ 。打出表之后,询问 $O(1)$ 。

代码

看着那些运行效率榜上15MS的代码我于是交了一份 0MS 的代码。正常的代码在这份代码之后。

#include <bits/stdc++.h>
int n,m,ans[17][17]={
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,6,0,108,0,1182,0,10338,0,79818,0,570342},
{0,0,0,0,0,6,0,124,62,1646,1630,18120,25654,180288,317338,1684956,3416994},
{0,0,0,0,0,0,124,0,13514,0,765182,0,32046702,0,136189727,0,378354090},
{0,0,0,0,0,108,62,13514,25506,991186,3103578,57718190,238225406,965022920,388537910,937145938,315565230},
{0,0,0,0,0,0,1646,0,991186,0,262834138,0,462717719,0,560132342,0,699538539},
{0,0,0,0,0,1182,1630,765182,3103578,262834138,759280991,264577134,712492587,886997066,577689269,510014880,807555438},
{0,0,0,0,0,0,18120,0,57718190,0,264577134,0,759141342,0,567660301,0,47051173},
{0,0,0,0,0,10338,25654,32046702,238225406,462717719,712492587,759141342,398579168,83006813,821419653,942235780,558077885},
{0,0,0,0,0,0,180288,0,965022920,0,886997066,0,83006813,0,690415372,0,620388364},
{0,0,0,0,0,79818,317338,136189727,388537910,560132342,577689269,567660301,821419653,690415372,796514774,696587391,175421667},
{0,0,0,0,0,0,1684956,0,937145938,0,510014880,0,942235780,0,696587391,0,856463275},
{0,0,0,0,0,570342,3416994,378354090,315565230,699538539,807555438,47051173,558077885,620388364,175421667,856463275,341279366}
};
int main(){
while (~scanf("%d%d",&n,&m))
printf("%d\n",ans[n][m]);
return 0;
}

  

正常的代码

#include <bits/stdc++.h>
using namespace std;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
const int N=17,S=1<<16,mod=1e9+7;
int n,m,dp[2][S],tot[N][N],ans[N][N];
int gbit(int v,int d){
return (v>>(d-1))&1;
}
void Solve_tot(int n,int m){
memset(dp,0,sizeof dp);
int T0=1,T1=0;
dp[T1][(1<<m)-1]=1;
for (int i=1;i<=n;i++){
for (int j=1;j<=m;j++){
T0^=1,T1^=1;
memset(dp[T1],0,sizeof dp[T1]);
for (int s=0;s<(1<<m);s++){
int v=dp[T0][s];
if (!v)
continue;
dp[T1][s^(1<<(j-1))]=(dp[T1][s^(1<<(j-1))]+v)%mod;
if (j>1&&!gbit(s,j-1)&&gbit(s,j)){
int _s=s^(1<<(j-2));
dp[T1][_s]=(dp[T1][_s]+v)%mod;
}
}
}
tot[i][m]=dp[T1][(1<<m)-1];
}
}
void Get_tot(int n){
for (int m=1;m<=16;m++)
Solve_tot(n,m);
}
int GetV(int n,int s,int len){
int v=1;
for (int i=1,j;i<=n;i=j){
for (j=i;j<n&&!((s>>j)&1);j++);
j++;
v=1LL*v*tot[j-i][len]%mod;
}
return v;
}
int cnt_1(int v){
int ans=0;
while (v)
ans+=v&1,v>>=1;
return ans;
}
void Solve_ans(int n,int m){
int dp[N],v[N];
for (int s=0;s<(1<<n);s++){
if (!(s&1))
continue;
memset(dp,0,sizeof dp);
for (int i=1;i<=m;i++)
v[i]=GetV(n,s,i);
dp[0]=1;
for (int i=1;i<=m;i++)
for (int j=0;j<i;j++)
dp[i]=(-1LL*dp[j]*v[i-j]+dp[i])%mod;
int f=(cnt_1(s)&1)?-1:1;
for (int i=1;i<=m;i++)
ans[n][i]=(ans[n][i]+f*dp[i])%mod;
}
}
void Get_ans(int m){
memset(ans,0,sizeof ans);
for (int n=1;n<=16;n++)
Solve_ans(n,m);
for (int i=1;i<=m;i++)
for (int j=1;j<=m;j++)
ans[i][j]=(ans[i][j]+mod)%mod;
}
int main(){
Get_tot(16);
Get_ans(16);
while (~scanf("%d%d",&n,&m))
printf("%d\n",ans[n][m]);
return 0;
}

  

51Nod1518 稳定多米诺覆盖 动态规划 插头dp 容斥原理的更多相关文章

  1. 【做题】51NOD1518 稳定多米诺覆盖——容斥&dp

    题意:求有多少种方案,用多米诺骨牌覆盖一个\(n\times m\)的棋盘,满足任意一对相邻行和列都至少有一个骨牌横跨.对\(10^9+7\)取模. \(n,m \leq 16\) 首先,这个问题的约 ...

  2. 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)

    [传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...

  3. P1282 多米诺骨牌 (差值DP+背包)

    题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...

  4. bzoj1814: Ural 1519 Formula 1 动态规划 插头dp

    http://acm.timus.ru/problem.aspx?space=1&num=1519 题目描述 一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数. ...

  5. 洛谷P1282 多米诺骨牌【线性dp】

    题目:https://www.luogu.org/problemnew/show/P1282 题意: 给定n个牌,每个牌有一个上点数和下点数.可以通过旋转改变交换上下点数. 问使得上点数之和和下点数之 ...

  6. ACM - 动态规划 - P1282 多米诺骨牌

    多米诺骨牌由上下 \(2\) 个方块组成,每个方块中有 \(1 \sim 6\) 个点.现有排成行的上方块中点数之和记为 \(S_1\),下方块中点数之和记为 \(S_2\),它们的差为 \(\lef ...

  7. 用1 x 2的多米诺骨牌填满M x N矩形的方案数(完美覆盖)

    题意 用 $1 \times 2$ 的多米诺骨牌填满 $M \times N$ 的矩形有多少种方案,$M \leq 5,N < 2^{31}$,输出答案模 $p$. 分析 当 $M=3$时,假设 ...

  8. Luogu P2595 [ZJOI2009]多米诺骨牌 容斥,枚举,插头dp,轮廓线dp

    真的是个好(毒)题(瘤).其中枚举的思想尤其值得借鉴. \(40pts\):插头\(dp\),记录插头的同时记录每一列的连接状况,复杂度\(O(N*M*2^{n + m} )\). \(100pts\ ...

  9. [CareerCup] 6.2 Dominos on Chess Board 棋盘上的多米诺

    6.2 There is an 8x8 chess board in which two diagonally opposite corners have been cut off. You are ...

随机推荐

  1. mysql生成数据字典

    git clone https://github.com/twindb/undrop-for-innodb.git make [root@redis01 undrop-for-innodb]# mak ...

  2. js用replaceAll全部替换的方法

    1 前言 js中字符串整体替换,只有自带的replace,并没有replaceAll,如果我们需要把字符串中的字符统一替换,可以用正则表达式,由于经常使用就在String直接加个原生方法,方便调用. ...

  3. python PIL实现图片合成

    在项目中需要将两张图片合在一起.遇到两种情况,一种就是两张非透明图片的合成, 一种是涉及到透明png的合成. 相关API见 http://pillow.readthedocs.io/en/latest ...

  4. react.css

    /* KISSY CSS Reset 理念:清除和重置是紧密不可分的 特色:1.适应中文 2.基于最新主流浏览器 维护:玉伯(lifesinger@gmail.com), 正淳(ragecarrier ...

  5. μCUnit,微控制器的单元测试框架

    在MCU on Eclipse网站上看到Erich Styger在8月26日发布的博文,一篇关于微控制器单元测试的文章,有很高的参考价值,特将其翻译过来以备学习.原文网址:https://mcuone ...

  6. 【JS】中ajax的URL中包含中文,后台接收乱码

    [问题]ajax提交get请求,url中参数包含中文,后台接收到显示乱码. [解决方案]前台: function getSiteInfoByName(siteName){ var res; $.aja ...

  7. Java编制至今总结和学习报告

    日期:2018.8.19 星期日 博客期:006 说个事,本来想把博客园做一个交流平台的,可是交流度有点少...嗯...我看我还是把这个平台当作经验传授平台和自己的作品发布平台吧!Java的知识详解, ...

  8. Rational Rose 2007下载、安装和破解

    一.文件下载 (1)DAEMON Tools Lite(虚拟光驱)下载地址 链接:https://pan.baidu.com/s/19L1FT6T1MlyhkfXyobd26A 提取码:drfs (2 ...

  9. python --------------网络(socket)编程

    一.网络协议 客户端/服务器架构 1.硬件C/S架构(打印机) 2.软件C/S架构(互联网中处处是C/S架构):B/S架构也是C/S架构的一种,B/S是浏览器/服务器 C/S架构与socket的关系: ...

  10. bzoj 2190

    题意:求 题解:这题...数据范围是真小... 研究一下这一表达式,发现gcd(i,j)=1表示i,j互质,那么互质肯定能想到欧拉函数,可是欧拉函数要求j<i,那么我们变化一下:显然原矩阵是对称 ...