2016-05-31  10:04:41

可并堆的裸题。

左偏树(小根堆为例

性质

1.满足堆的性质,每个节点权值小于左右儿子权值

2.每个节点有dis值,表示子树最浅的叶子深度加1

3.左子树dis必须大于右子树--->dis[p]=dis[rs[p]]+1

操作:

1.合并

a.b两棵左偏树,设a权值小于b,则将a的右儿子与b合并

合并之后,若不满足左偏,交换左右儿子。

2.插入

把一个节点看做一棵左偏树合并

3.删除一个根节点

将左右儿子合并

~~~~~~~~~~~~~~~~~

左偏树常与并查集一起使用,删除操作后,要将fa[rt]=merge(ls[rt],rs[rt]) 且fa[fa[rt]]=fa[rt],即新根的父亲设为自己,合并也将左右子树的根的父亲修改为新堆的父亲

 #include<bits/stdc++.h>
#define inf 1000000000
#define ll long long
#define N 1000005
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,v[N],ls[N],rs[N],f[N],dep[N];
bool die[N];
char ch[];
int merge(int x,int y){
if(!x||!y)return x+y;
if(v[x]>v[y])swap(x,y);
rs[x]=merge(rs[x],y);
if(dep[rs[x]]>dep[ls[x]])swap(rs[x],ls[x]);
dep[x]=dep[rs[x]]+;
return x;
}
int find(int x){return f[x]==x?x:f[x]=find(f[x]);}
int main(){
n=read();
for(int i=;i<=n;i++)v[i]=read(),f[i]=i;
m=read();
while(m--){
scanf("%s",ch);
if(ch[]=='M'){
int x=read(),y=read();
if(die[x]||die[y])continue;
int fx=find(x),fy=find(y);
if(fx!=fy){
int t=merge(fx,fy);
f[fx]=f[fy]=t;
}
}
else{
int x=read();
if(die[x])printf("0\n");
else{
int fx=find(x);die[fx]=;
printf("%d\n",v[fx]);
f[fx]=merge(ls[fx],rs[fx]);
f[f[fx]]=f[fx];
}
}
}
return ;
}

1455: 罗马游戏

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 1405  Solved: 580
[Submit][Status][Discuss]

Description

罗马皇帝很喜欢玩杀人游戏。 他的军队里面有n个人,每个人都是一个独立的团。最近举行了一次平面几何测试,每个人都得到了一个分数。 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻。他决定玩这样一个游戏。 它可以发两种命令: 1. Merger(i, j)。把i所在的团和j所在的团合并成一个团。如果i, j有一个人是死人,那么就忽略该命令。 2. Kill(i)。把i所在的团里面得分最低的人杀死。如果i这个人已经死了,这条命令就忽略。 皇帝希望他每发布一条kill命令,下面的将军就把被杀的人的分数报上来。(如果这条命令被忽略,那么就报0分)

Input

第一行一个整数n(1<=n<=1000000)。n表示士兵数,m表示总命令数。 第二行n个整数,其中第i个数表示编号为i的士兵的分数。(分数都是[0..10000]之间的整数) 第三行一个整数m(1<=m<=100000) 第3+i行描述第i条命令。命令为如下两种形式: 1. M i j 2. K i

Output

如果命令是Kill,对应的请输出被杀人的分数。(如果这个人不存在,就输出0)

Sample Input

5
100 90 66 99 10
7
M 1 5
K 1
K 1
M 2 3
M 3 4
K 5
K 4

Sample Output

10
100
0
66

【bzoj1455】罗马游戏 可并堆的更多相关文章

  1. 【BZOJ-1455】罗马游戏 可并堆 (左偏树)

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1355  Solved: 561[Submit][Status][Discuss] ...

  2. [bzoj1455]罗马游戏_左偏树_并查集

    罗马游戏 bzoj-1455 题目大意:给你n个人,2种操作,m次操作:1.将i号士兵所在的集合的最小值删除 2.合并i和j两个士兵所在的团体 注释:$1\le n\le 10^6$,$1\le m ...

  3. BZOJ 1455: 罗马游戏 [可并堆]

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1715  Solved: 718[Submit][Status][Discuss] ...

  4. [BZOJ1455]罗马游戏 左偏树+并查集

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 2285  Solved: 994[Submit][Status][Discuss] ...

  5. 【bzoj1455】罗马游戏 可并堆+并查集

    题目描述 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻.他决定玩这样 ...

  6. bzoj1455: 罗马游戏 + bzoj2809: Dispatching(可并堆)

    昨天看了可并堆是什么,写的是左偏树 大概就是一棵树 1.有左偏性质,即当前根到左叶子节点距离比到右叶子节点距离大 2.有堆性质,堆顶关键字比子树关键字小 合并两个堆的时候,关键字大的插入到关键字小的那 ...

  7. BZOJ1455 罗马游戏 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1455 题意概括 n个人,2种操作. 一种是合并两个人团,一种是杀死某一个人团的最弱的人. 题解 左 ...

  8. Bzoj1455 罗马游戏

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1622  Solved: 679 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人 ...

  9. 【数据结构】bzoj1455罗马游戏

    Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻 ...

随机推荐

  1. 【Java环境变量的配置问题】

    首先是JVM.JRE.JDK三者之间的关系: java的跨平台性依赖于Java虚拟机:jvm(Java Virtual Machine),而jre(Java Runtime Environment,中 ...

  2. javascript实用技巧,js小知识

    一.js整数的操作 使用|0和~~可以将浮点转成整型且效率方面要比同类的parseInt,Math.round 要快,在处理像素及动画位移等效果的时候会很有用.性能比较见此. var foo = (1 ...

  3. Powershell查看SSAS Cube占用磁盘空间

    以下是用powershell查看Cube占用磁盘空间大小的方式.可以编译成函数也可以直接把参数改成需要的服务器名称. Param($ServerName="SERVERNAME") ...

  4. 如何调试SSIS包之跟踪变量赋值

    在SSIS开发工具SQL Server Data Tools中提供了调试功能,可以让我们方便的跟踪参数赋值或者数据流条数.本文主要介绍了如何使用SSDT的调试功能. Part A: Script ta ...

  5. long和int的区别

    转自:http://blog.sina.com.cn/s/blog_6f62c9510101svjz.html 突然间就想到了long和int到底什么区别(发现有很多问题都是突然间想到的),然后百度. ...

  6. APP设计尺寸规范大全,APP界面设计新手教程【官方版】(转)

    正值25学堂一周年之际,同时站长和APP设计同仁们在群里(APP界面设计 UI设计交流群,APP界面设计⑥群 APPUI设计③群58946771 APP设计资源⑤群 386032923欢迎大家加入交流 ...

  7. redis如何安装

    http://www.redis.net.cn/download/ (1)下载,解压,编译: $ wget http://download.redis.io/releases/redis-3.0.6. ...

  8. AndroidStudio导入新项目一直卡在Building gradle project info的解决解决方案

      尝试了各种办法,FQ,离线gradle等,发现一个更好用更简单的办法: 解决方案: 1.随便找一个你能运行的as项目 2.打开gradle-wrapper.properties,文件目录:项目/g ...

  9. 自己yy的Splay

    #include <iostream> #include <cstdio> #include <queue> using namespace std; ; stru ...

  10. nginx配置文件nginx.conf

    #定义Nginx运行的用户和用户组user www www; #nginx进程数,建议设置为等于CPU总核心数.worker_processes 8; #全局错误日志定义类型,[ debug | in ...