Description

 
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
 
一句话题意:

Input

 
接下来T行,每行一个正整数p,代表你需要取模的值

Output

T行,每行一个正整数,为答案对p取模后的值

Sample Input

3
2
3
6

Sample Output

0
1
4

HINT

对于100%的数据,T<=1000,p<=10^7

Solution

并不会拓展欧拉定理,于是去学了一下,发现看不懂证明,所以偷了一个结论来用

这里用到了第三个结论

于是随便求求欧拉函数

递归下去求出答案就好了(套公式)

#include <bits/stdc++.h>

using namespace std ;

#define ll long long

int T,p ; 

int power( int a , int b , int mod ) {
int ans = , base = a ;
while( b ) {
if( b& ) ans = 1ll * ans * base % mod ;
base = 1ll * base * base % mod ;
b >>= 1ll ;
}
return 1ll * ans % mod ;
} int phi( int n ) {
int m = sqrt( n ) , ans = n ;
for( int i = ; i <= m; i ++ )
if(n % i == ) {
ans = ans / i * ( i - ) ;
while( n % i == ) n /= i ;
}
if( n > ) ans = ans / n * ( n - ) ;
return ans ;
} int calc( int x ) {
if( x == ) return ;
int t = phi( x ) ;
return power( , calc( t ) + t , x ) ;
} int main() {
scanf( "%d" , &T ) ;
while(T--) {
scanf("%d" , &p) ;
printf("%d\n" , calc(p) ) ;
}
}

BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理的更多相关文章

  1. Luogu4139 上帝与集合的正确用法 拓展欧拉定理

    传送门 题意:求$2^{2^{2^{2^{...}}}} \mod p$的值.$p \leq 10^7$ 最开始想到的是$x \equiv x^2 \mod p$,然后发现不会做... 我们可以想到拓 ...

  2. bzoj3884: 上帝与集合的正确用法 扩展欧拉定理

    题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...

  3. BZOJ3884 上帝与集合的正确用法 【欧拉定理】

    题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...

  4. 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)

    [BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...

  5. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  6. bzoj3884上帝与集合的正确用法

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  7. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

  8. 【bzoj3884】上帝与集合的正确用法 扩展欧拉定理

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  9. bzoj3884 上帝与集合的正确用法

    a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...

随机推荐

  1. RSA原理说明

    长度,建议至少1024.模数n(常取默认65537)两边都要用. 指数e,和n一起就是公钥. 指数d,和n一起就是私钥. 质数p和q用于生成密钥对,然后就丢弃不公开. 一.密钥对的生成步骤 1.随机选 ...

  2. 迁移到 Linux :入门介绍 | Linux 中国

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/F8qG7f9YD02Pe/article/details/79001952 这个新文章系列将帮你从其 ...

  3. android动态设置边框颜色

    <?xml version="1.0" encoding="utf-8"?> <shape xmlns:android="http: ...

  4. Unity 补充安装

    当需要下载 安装Unity之时没勾选的一些组件时, 1.去Unity官网点开Unity旧版本 2.找到你的Unity版本,然后只要下载Unity安装程序 3.点开安装程序,去掉已安装组件的勾选,勾选你 ...

  5. SQLyog恢复数据库报错解决方法【Error Code: 2006 - MySQL server has gone away】

    https://blog.csdn.net/niqinwen/article/details/8693044 导入数据库的时候 SQLyog 报错了 Error Code: 2006 – MySQL ...

  6. Bind()事件

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. python接口自动化 -参数关联(一)

    原文地址https://www.cnblogs.com/yoyoketang/p/6886610.html 原文地址https://www.cnblogs.com/yoyoketang/ 原文地址ht ...

  8. 第一章SpringBoot入门

    一.简介 SpringBoot来简化Spring应用的开发,约定大于配置,去繁从简,just run就能创建一个独立的产品级别的应用. 背景: j2EE笨重的开发方法,繁多的配置,低下的开发效率,复杂 ...

  9. c#及js实现将金融变成3位一逗号

    1.c#用string.format ToString("#,###.00") 2.js方法 转自http://www.cnblogs.com/cssfirefly/p/35820 ...

  10. zw版【转发·台湾nvp系列Delphi例程】HALCON FastThreshold2

    zw版[转发·台湾nvp系列Delphi例程]HALCON FastThreshold2 FastThreshold_Delphi_2.PNG procedure TForm1.Button1Clic ...