BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description

Input
Output
Sample Input
2
3
6
Sample Output
1
4
HINT
Solution
并不会拓展欧拉定理,于是去学了一下,发现看不懂证明,所以偷了一个结论来用
这里用到了第三个结论
于是随便求求欧拉函数
递归下去求出答案就好了(套公式)
#include <bits/stdc++.h> using namespace std ; #define ll long long int T,p ; int power( int a , int b , int mod ) {
int ans = , base = a ;
while( b ) {
if( b& ) ans = 1ll * ans * base % mod ;
base = 1ll * base * base % mod ;
b >>= 1ll ;
}
return 1ll * ans % mod ;
} int phi( int n ) {
int m = sqrt( n ) , ans = n ;
for( int i = ; i <= m; i ++ )
if(n % i == ) {
ans = ans / i * ( i - ) ;
while( n % i == ) n /= i ;
}
if( n > ) ans = ans / n * ( n - ) ;
return ans ;
} int calc( int x ) {
if( x == ) return ;
int t = phi( x ) ;
return power( , calc( t ) + t , x ) ;
} int main() {
scanf( "%d" , &T ) ;
while(T--) {
scanf("%d" , &p) ;
printf("%d\n" , calc(p) ) ;
}
}
BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理的更多相关文章
- Luogu4139 上帝与集合的正确用法 拓展欧拉定理
传送门 题意:求$2^{2^{2^{2^{...}}}} \mod p$的值.$p \leq 10^7$ 最开始想到的是$x \equiv x^2 \mod p$,然后发现不会做... 我们可以想到拓 ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- BZOJ3884 上帝与集合的正确用法 【欧拉定理】
题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...
- 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)
[BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- 【bzoj3884】上帝与集合的正确用法 扩展欧拉定理
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
随机推荐
- RSA原理说明
长度,建议至少1024.模数n(常取默认65537)两边都要用. 指数e,和n一起就是公钥. 指数d,和n一起就是私钥. 质数p和q用于生成密钥对,然后就丢弃不公开. 一.密钥对的生成步骤 1.随机选 ...
- 迁移到 Linux :入门介绍 | Linux 中国
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/F8qG7f9YD02Pe/article/details/79001952 这个新文章系列将帮你从其 ...
- android动态设置边框颜色
<?xml version="1.0" encoding="utf-8"?> <shape xmlns:android="http: ...
- Unity 补充安装
当需要下载 安装Unity之时没勾选的一些组件时, 1.去Unity官网点开Unity旧版本 2.找到你的Unity版本,然后只要下载Unity安装程序 3.点开安装程序,去掉已安装组件的勾选,勾选你 ...
- SQLyog恢复数据库报错解决方法【Error Code: 2006 - MySQL server has gone away】
https://blog.csdn.net/niqinwen/article/details/8693044 导入数据库的时候 SQLyog 报错了 Error Code: 2006 – MySQL ...
- Bind()事件
<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- python接口自动化 -参数关联(一)
原文地址https://www.cnblogs.com/yoyoketang/p/6886610.html 原文地址https://www.cnblogs.com/yoyoketang/ 原文地址ht ...
- 第一章SpringBoot入门
一.简介 SpringBoot来简化Spring应用的开发,约定大于配置,去繁从简,just run就能创建一个独立的产品级别的应用. 背景: j2EE笨重的开发方法,繁多的配置,低下的开发效率,复杂 ...
- c#及js实现将金融变成3位一逗号
1.c#用string.format ToString("#,###.00") 2.js方法 转自http://www.cnblogs.com/cssfirefly/p/35820 ...
- zw版【转发·台湾nvp系列Delphi例程】HALCON FastThreshold2
zw版[转发·台湾nvp系列Delphi例程]HALCON FastThreshold2 FastThreshold_Delphi_2.PNG procedure TForm1.Button1Clic ...