欧拉函数:

φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1、p2…pk为n的所有素因子。
比如:φ(12)=12*(1-1/2)(1-1/3)=4。
可以用类似求素数的筛法。(素数打表)
先筛出n以内的所有素数,再以素数筛每个数的φ值。
比如求10以内所有数的φ值:
设一数组phi[11],赋初值phi[1]=1,phi[2]=2...phi[10]=10;
然后从2开始循环,把2的倍数的φ值*(1-1/2),则phi[2]=2*1/2=1,phi[4]=4*1/2=2,phi[6]=6*1/2=3....;
再是3,3的倍数的φ值*(1-1/3),则phi[3]=3*2/3=2,phi[6]=3*2/3=2,phi[9]=.....;(4的时候不符合条件)
再5,再7...因为对每个素数都进行如此操作,因此任何一个n都得到了φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk)的运算。

传送门:http://blog.csdn.net/scnujack/article/details/7420816

The Euler function

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6849    Accepted Submission(s): 2851

Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
 
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
 
Output
Output the result of (a)+ (a+1)+....+ (b)
 
Sample Input
3 100
 
Sample Output
3042
 
 
 
代码:
 #include<bits/stdc++.h>
const int maxn=*1e6+;
using namespace std;
typedef long long ll;
ll phi[maxn];
void euler(){
for(int i=;i<maxn;i++)
phi[i]=i;
for(int i=;i<maxn;i++){
if(i==phi[i]){ //此时,i为素数,举例4,因为2的时候phi[4]值发生变化了,所以就把4跳过去了
for(int j=i;j<maxn;j+=i) //j累加i,将有i这个素因子的所有数都进行运算
phi[j]=phi[j]/i*(i-);
}
}
}
int main(){
euler();
int n,m;
while(~scanf("%d%d",&n,&m)){
ll ans=;
for(int i=n;i<=m;i++)
ans+=phi[i];
printf("%lld\n",ans);
}
return ;
}

HDU 2824.The Euler function-筛选法求欧拉函数的更多相关文章

  1. HDU2824-The Euler function-筛选法求欧拉函数+求和

    欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...

  2. The Euler function(线性筛欧拉函数)

    /* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...

  3. hdu 2824 The Euler function(欧拉函数)

    题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质 ...

  4. hdu 2814 快速求欧拉函数

    /** 大意: 求[a,b] 之间 phi(a) + phi(a+1)...+ phi(b): 思路: 快速求欧拉函数 **/ #include <iostream> #include & ...

  5. 欧拉函数,打表求欧拉函数poj3090

    欧拉函数 φ(n) 定义:[1,N]中与N互质的数的个数 //互质与欧拉函数 /* 求欧拉函数 按欧拉函数计算公式,只要分解质因数即可 */ int phi(int n){ int ans=n; ;i ...

  6. hdu 2824 The Euler function

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. HDU - 2824 The Euler function 欧拉函数筛 模板

    HDU - 2824 题意: 求[a,b]间的欧拉函数和.这道题卡内存,只能开一个数组. 思路: ϕ(n) = n * (p-1)/p * ... 可利用线性筛法求出所有ϕ(n) . #include ...

  8. hdu 2824 The Euler function 欧拉函数打表

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. HDU——2824 The Euler function

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. ArcGis下的叠加分析

     1矢量与矢量叠加的话就用ToolBox里有Overlay: 2如果是矢量和栅格叠加的话用Spatial analysis模块中的 zonal statistics: 3还有就是栅格与栅格的叠加S ...

  2. 【版本控制】VisualSVN Server更改SVN版本库存放路径的方法

    最近也玩起了SVN软件版本管理,在本机上安装了VisualSVN Server+TortoiseSVN,感觉还不错吧.但是,版本库存在哪里呢?在安装VisualSVN Server时,已经默认设置了, ...

  3. 微信小程序使用原生WebSokcet实现断线重连及数据拼接

    以前做小程序为了应急找了个插件去链接WebSokcet,文章传送门. 回过头在新项目中再次使用时出现了些许问题,不一一赘述.遂决定好好用一下原生的WebSokcet. 一.说明 1.小程序原生的Web ...

  4. CentOS 64位上编译 Hadoop2.6.0

    由于hadoop-2.6.0.tar.gz安装包是在32位机器上编译的,64位的机器加载本地库.so文件时会出错,比如: java.lang.UnsatisfiedLinkError: org.apa ...

  5. Install the AWS Command Line Interface on Linux

    Install the AWS Command Line Interface on Linux You can install the AWS Command Line Interface and i ...

  6. C#弱引用

    加菲猫 Just have a little faith. C#弱引用 .NET框架提供了另一有趣的特色,被用于实现多样的高速缓存.在.NET中弱引用通过System.WeakReference类实现 ...

  7. SQLyog 使用笔记,自增主键数据冲突错误

    select max(id) from test ; desc test ; insert into  test (a,b,c) values ('abc','123-213','test'); RE ...

  8. 关于applePay详细讲解

    https://www.cnblogs.com/diweinan/p/6225501.html

  9. saltstack入门至放弃之salt安装部署

    学习了一段时间的saltstack,是时候记录下了.友提:学习环境是两台centos_7.2_x64机器 系统初始化: 两台机器执行以下脚本即可(友提:两台服务器的主机名配置在/etc/hosts中, ...

  10. spring boot修改内置容器tomcat的服务端口

    方式一 在spring boot的web 工程中,可以使用内置的web container.有时需要修改服务端口,可以通过配置类和@Configuration注解来完成. // MyConfigura ...