最长上升子序列O(nlogn) 要强的T^T(2358)
题目来源:http://www.fjutacm.com/Problem.jsp?pid=2358
要强的T^T
TimeLimit:1000MS MemoryLimit:65536K
64-bit integer IO format:%lld
Problem Description
T^T看到Home_W出了一道这么简短的数学题,觉得自己肯定也能出一道。于是便有了这题:
给定n个数,只包含1和2,问最少修改几个数,能使得n个数有序(单调不减)
Input
第一行包含一个数n,表示有n个数,接下来的n行是n个数。(1<=n<=30000)
Output
输出一行,包含最少修改次数
SampleInput
7
2 1 1 1 2 2 1
SampleOutput
2
思路:很明显的最长不下降子序列,但是这题要用到最长上升子序列的O(nlogn)优化方法,该优化方法是用一个数组保存长度为i的最长上升子序列的最小元素,比如对 a[N]={1, 2, 3, 0, 1}进行一边更新len_min数组,i=0, len_min[1]=1; i=1, len_min[2]=2; i=2, len_min[3]=3; i=3, len_min[1]=0, len_min[2]=1。也就是说len_min保存的是到目前循环到的位置为止所有长度为i的子序列里第i位的最小值,就像len_min[1]在i=0(a[0]=1)时为1,但是到了i=3(a[3]=0)时就变成了0,因为长度为1的子序列目前最小的结尾数字已经变成了0。那么这个数组就可以用来二分查找一个数之前最长的子序列。设上界是目前为止的最长上升子序列长度,下界是1如果中间位置保存的值小于目前这个数,那么我们就可以认为这个数前面的最长上升子序列至少不小于那个中间位置的值。
#include<stdio.h>
#include<string.h>
const int N=;
int Max(int a, int b) { return a>b?a:b; }
int Min(int a, int b) { return a<b?a:b; }
int a[N], dp[N], lmin[N], cmp;
int main( ){
int n, ans=;
memset(lmin, 0x3f, sizeof(lmin));
cmp=lmin[];
scanf("%d", &n);
for(int i=; i<n; i++)
scanf("%d", a+i), dp[i]=;
lmin[]=a[];
for(int i=; i<n; ++i){
int l=, r=ans+;
while(l+<r){
int mid=(l+r)/;
if(lmin[mid]>a[i]) r=mid;
else l=mid;
}
if(lmin[l]<=a[i]){
lmin[l+]=Min(lmin[l+], a[i]);
ans=Max(ans, l+);
}
if(!l){
lmin[]=Min(lmin[], a[i]);
}
}
printf("%d\n", n-ans);
return ;
}
拙略的代码
最长上升子序列O(nlogn) 要强的T^T(2358)的更多相关文章
- 最长递减子序列(nlogn)(个人模版)
最长递减子序列(nlogn): int find(int n,int key) { ; int right=n; while(left<=right) { ; if(res[mid]>ke ...
- 洛谷1439:最长公共子序列(nlogn做法)
洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- 满足要求的最长上升子序列(nlogn)
题意:数列A1,A2,...,AN,修改最少的数字,使得数列严格单调递增.(1<=N<=10^5; 1<=Ai<=10^9 ) 思路:首先要明白的一点是数列是严格单调递增,那么 ...
- 最长上升子序列O(nlogn)算法详解
最长上升子序列 时间限制: 10 Sec 内存限制:128 MB 题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.我们想知道此时最长上升子 ...
- P3402 最长公共子序列(nlogn)
P3402 最长公共子序列 题目背景 DJL为了避免成为一只咸鱼,来找Johann学习怎么求最长公共子序列. 题目描述 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子 ...
- 最长上升子序列 O(nlogn)
题意:求一个序列中的最长上升子序列. 平常我用的是N*N做法,但是一遇到需要nlogn时,就被卡的无地自容了. 所以下定决心要学习nlogn做法. 如何实现nlongn哪? 这里要用到一个栈B,记录按 ...
- hdu 5773 最长递增子序列 (nlogn)+贪心
The All-purpose Zero Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
随机推荐
- 链表java实现
链表是用指针将多个节点联系在一起,通过头节点和尾节点还有节点数量,可以对链表进行一系列的操作.是线性表的链式存储实现. 1.链表是多个不连续的地址组成在一起根据指针链接在一起的,由多个节点组成,每个节 ...
- cmake 常用变量和常用环境变量查表手册
cmake 常用变量和常用环境变量查表手册 一,cmake 变量引用的方式: 前面我们已经提到了,使用${}进行变量的引用.在 IF 等语句中,是直接使用变量名而不通过${}取值 二,cmake 自定 ...
- 【刷题】洛谷 P3950 部落冲突
题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...
- Spring点滴七:Spring中依赖注入(Dependency Injection:DI)
Spring机制中主要有两种依赖注入:Constructor-based Dependency Injection(基于构造方法依赖注入) 和 Setter-based Dependency Inje ...
- 【CF710F】String Set Queries(二进制分组,AC自动机)
[CF710F]String Set Queries(二进制分组,AC自动机) 题面 洛谷 CF 翻译: 你有一个字符集合\(D\),初始为空, 有三种操作: 往\(D\)中加入一个串:从\(D\)中 ...
- USACO Section 1.5 Superprime Rib 解题报告
题目 题目描述 超级素数的定义如下:如果有个素数我们从右往左依次去掉一位数,每次去掉一位数剩下的数仍然是素数,那么我们称这个数是超级素数.例如7331,这是一个素数,从右往左依次去掉一位数733, 7 ...
- bzoj 3779: 重组病毒
一道好题~~ 一个点到根传染需要的时间是这段路径上不同颜色的数目,一个点子树到根平均传染时间就是加权平均数了(好像是废话). 所以只要用线段树维护dfs序就这个可以了,换根的话一个点的子树要么在dfs ...
- 音视频处理之FFmpeg+SDL视频播放器20180409
一.FFmpeg视频解码器 1.视频解码知识 1).纯净的视频解码流程 压缩编码数据->像素数据. 例如解码H.264,就是“H.264码流->YUV”. 2).一般的视频解码流程 视频码 ...
- Java-异常机制详解以及开发时异常设计的原则要求
Java-异常机制详解以及开发时异常设计的原则要求 http://blog.csdn.net/Jack__Frost/article/details/52760930?locationNum=6
- zookeeper的安装及共享锁的应用
Zookeeper的安装及共享锁的应用 1.zookeeper的安装 1.1 下载安装包 Wget http://mirror.bit.edu.cn/apache/zookeeper/zo ...