评:b+c,bc好比向量里的一组基底,可以将关于b,c的对称式表示出来.

MT【114】构造二次函数的更多相关文章

  1. MT【219】构造二次函数

    (2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$ 构造二次函数$f(x)=qx$,则$a,f(a),f(f ...

  2. MT【39】构造二次函数证明

    这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...

  3. E - Rebuild UVALive - 7187 (二次函数极值问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531 Problem Description Archaeologists find ruins of ...

  4. Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

  5. Line Search and Quasi-Newton Methods

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

  6. 深入理解Plasma(四)Plasma Cash

    这一系列文章将围绕以太坊的二层扩容框架 Plasma,介绍其基本运行原理,具体操作细节,安全性讨论以及未来研究方向等.本篇文章主要介绍在 Plasma 框架下的项目 Plasma Cash. 在上一篇 ...

  7. [深入理解Android卷一全文-第七章]深入理解Audio系统

    由于<深入理解Android 卷一>和<深入理解Android卷二>不再出版,而知识的传播不应该由于纸质媒介的问题而中断,所以我将在CSDN博客中全文转发这两本书的全部内容. ...

  8. 一些有用的数学知识(Updating)

    文章目录 拉格朗日插值公式 微分中值定理 费马引理 拉格朗日中值定理 柯西中值定理 洛必达法则 连分数(NOI2021 D2T2 考点) 定义 结论 定理1 定理2 定理3 定理4 定理5 欧拉公式 ...

  9. MT【329】二次函数系数的最大最小

    已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\min\{a,b,c\}$求$t$的最大值. 分析:由$a,c$的对称性,不妨$c\ge a$即$2a+b\le1$ ...

随机推荐

  1. JAVA图书管理系统汇总共27个[转]

    java图书馆管理系统[优秀毕业设计论文+源码]http://down.51cto.com/data/68350java+sql server图书管理系统 http://down.51cto.com/ ...

  2. oracle数据库之子查询

    子查询也叫内部查询,在主查询之前执行一次并得到结果,此结果一般情况下,是用来当做是主查询的条件.   -- 在 emp 表中,找出工资比 ALLEN 的高? -- 先查出 ALLEN 的工资是多少? ...

  3. [操作系统]makefile

    makefile文件保存了编译器和连接器的参数选项,还表述了所有源文件之间的关系(源代码文件需要的特定的包含文件,可执行文件要求包含的目标文件模块及库等). 创建程序(make程序)首先读取makef ...

  4. hive的优化

    hive.optimize.cp=true:列裁剪hive.optimize.prunner:分区裁剪hive.limit.optimize.enable=true:优化LIMIT n语句hive.l ...

  5. Netty源码分析第4章(pipeline)---->第2节: handler的添加

    Netty源码分析第四章: pipeline 第二节: Handler的添加 添加handler, 我们以用户代码为例进行剖析: .childHandler(new ChannelInitialize ...

  6. easyui的tab标签链接aspx页面引发全局刷新的问题解决方案

    通过tree组件和tabs组件结合加载子页面窗体aspx,点击按钮页面全部重新加载,或整个跳到子窗体页面,解决方案:换一种结合iframe的方式做系统界面:在tree组件出替换掉设置href属性处为下 ...

  7. 【Ansible】ansible循环

    Ansible 循环 一.简单介绍 在ansible2.5之前,大多数人使”with_XXX”类型的关键字来操作循环,但是从2.6版本开始,官方推荐是”loop”关键字代替” with_XXX”. 1 ...

  8. 小球下落(Dropping Balls, Uva 679)

    题目描述 有一棵二叉树,最大深度为D,且所有的叶子深度都相同.所有结点从上到下从左到右编号为1,2,3,-,2eD-1.在结点1处放一个小球,它会往下落.每个结点上都有一个开关,初始全部关闭,当每次有 ...

  9. linux go环境安装

    方法一 这次将源码包安装的目录是是/root下. 1.官网下载源码包. 官网链接:https://golang.org/dl/   wget https://storage.googleapis.co ...

  10. [linux] 利用PROMPT_COMMAND实现命令审计

    网上查了实现命令审计大概有以下几种: 查不到了,改天再补充 以下环境基于CentOS 6 1.修改history时间格式 echo 'HISTTIMEFORMAT="%F %T " ...