2742: [HEOI2012]Akai的数学作业

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 535  Solved: 226
[Submit][Status][Discuss]

Description

这里是广袤无垠的宇宙这里是一泻千里的银河
这里是独一无二的太阳系
这里是蔚蓝色的地球
这里,就是这里,是富饶的中国大陆!
这里是神奇的河北大地
这里是美丽的唐山
这里是神话般的唐山一中
这里是Akai曾经的教室
黑板上还留有当年Akai做过的数学作业,其实也并不是什么很困难的题目:
 
给出一个一元n次方程:
a0 + a1x + a    2   x2 +…+ anxn= 0
求此方程的所有有理数解。
 
Akai至今还深刻记得当年熬夜奋战求解的时光
他甚至还能记得浪费了多少草稿纸
但是却怎么也想不起来最后的答案是多少了
你能帮助他么?

Input

第一行一个整数n。第二行n+1个整数,分别代表a    0 到a n

Output

第一行输出一个整数t,表示有理数解的个数
接下来t行,每行表示一个解
解以分数的形式输出,要求分子和分母互质,且分母必须是正整数特殊的,如果这个解是一个整数,那么直接把这个数输出
等价的解只需要输出一次
所有解按照从小到大的顺序输出

Sample Input

3
-24 14 29 6

Sample Output

3
-4
-3/2
2/3

HINT

【数据范围】

对于30%的数据,n<=10

对于100%的数据,n <= 100,|a i| <= 2*10^7,an≠ 0

Source

[Submit][Status][Discuss]

好神的一道HEOI题。

据LH讲,有个定理叫做多项式高斯引理什么的,大概就是讲,复数域下的一个关于$x$的$n$次多项式$f(x)=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+...+a_{n}x^{n}$一定可以分解成$n$个含$x$的一次多项式相乘,即$f(x)$一定存在一种形如$f(x)=\prod{(b_{i}x+c_{i})}$的表示,其中每个式子都会产生一个复数域下的根(当然,这些根有可能重复)。这道题叫我们只用考虑有理数根,所以可以把式子改写为$f(x)=g(x)*\prod{(b_{i}x+c_{i})}$的样子,其中g(x)是一个关于$x$的多项式,包含了所有的非有理数根,剩下的部分就表示了所有的有理数根。发现每个有理数根都能表示成$x_{i}=\frac{c_{i}}{b_{i}}$,然后不难发现$f(x)=\sum_{i=0}^{n}{a_{i}x^{i}}$中的$a_{0}$包含了所有的$c_{i}$,而$a_{n}$包含了有所的$b_{i}$,所以对于所有的合法有理数根$x_{i}=\frac{c_{i}}{b_{i}}$,$c_{i}$一定是$a_{0}$的约数,$b_{i}$一定是$a_{n}$的约数。所以可以先处理出$a_{0}$和$a_{n}$的所有约数,然后暴力枚举$b_{i}$和$c_{i}$,$O(N)$check是否合法即可。check的方式是,对于$x=\frac{p}{q}$,$f(x)=\sum_{i=0}^{n}{a_{i}p^{i}q^{n-i}}$,在模意义下检查是否为$0$即可。

 #include <bits/stdc++.h>

 template <class T>
T gcd(T a, T b)
{
return b ? gcd(b, a % b) : a;
} typedef long long lnt; const int mxn = ;
const int mxm = ;
const lnt mod = ; int n, s[mxn]; struct number
{
int a, b, f; // ans = a / b number(void) {};
number(int x, int y, int g = )
: a(x), b(y), f(g) {}; void print(void)
{
if (f == -)
putchar('-');
if (a % b)
printf("%d/%d\n", a, b);
else
printf("%d\n", a / b);
}
}ans[mxm]; int tot; bool cmp(const number &A, const number &B)
{
if (A.f == - && B.f == +)
return true;
if (A.f == + && B.f == -)
return false;
if (A.f == + && B.f == +)
return 1LL * A.a * B.b < 1LL * B.a * A.b;
if (A.f == - && B.f == -)
return 1LL * A.a * B.b > 1LL * B.a * A.b;
} void leadingZeros(void)
{
int cnt = ; while (!s[cnt])
++cnt; if (cnt)
{
n = n - cnt; for (int i = ; i <= n; ++i)
s[i] = s[i + cnt]; ans[tot++] = number(, );
}
} int divA[mxm], sizA;
int divB[mxm], sizB; void divide(int x, int *div, int &siz)
{
if (x < )x = -x; siz = ; int t = int(sqrt(x)); for (int i = ; i <= t; ++i)
if (x % i == )
{
div[siz++] = i;
div[siz++] = x / i;
} if (t * t == x)--siz;
} int powA[mxn];
int powB[mxn]; void check(lnt a, lnt b, lnt f)
{
powA[] = powB[] = 1LL; for (int i = ; i <= n; ++i)
{
powA[i] = (powA[i - ] * a) % mod;
powB[i] = (powB[i - ] * b) % mod;
} lnt sum = , tmp; for (int i = ; i <= n; ++i)
{
tmp = s[i];
tmp = (tmp * powA[i]) % mod;
tmp = (tmp * powB[n - i]) % mod; if (i & )tmp = (tmp * f + mod) % mod; sum = (sum + tmp) % mod;
} if (sum == )ans[tot++] = number(a, b, f);
} signed main(void)
{
scanf("%d", &n); for (int i = ; i <= n; ++i)
scanf("%d", s + i); leadingZeros(); divide(s[], divA, sizA);
divide(s[n], divB, sizB); for (int i = ; i < sizA; ++i)
for (int j = ; j < sizB; ++j)
{
int a = divA[i];
int b = divB[j]; if (gcd(a, b) == )
{
check(a, b, +);
check(a, b, -);
}
} std::sort(ans, ans + tot, cmp); printf("%d\n", tot); for (int i = ; i < tot; ++i)
ans[i].print();
}

@Author: YouSiki

BZOJ 2742: [HEOI2012]Akai的数学作业的更多相关文章

  1. [BZOJ2742][HEOI2012]Akai的数学作业[推导]

    题意 给定各项系数,求一元 \(n\) 次方程的有理数解. \(n\leq 100\). 分析 设答案为 \(\frac{p}{q}\) ,那么多项式可以写成 \(a_0\frac{p}{q}+a_1 ...

  2. 【BZOJ2742】【HEOI2012】Akai的数学作业 [数论]

    Akai的数学作业 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 这里是广袤无垠的宇宙这里 ...

  3. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  4. BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘

    2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...

  5. bzoj2326: [HNOI2011]数学作业

    矩阵快速幂,分1-9,10-99...看黄学长的代码理解...然而他直接把答案保存在最后一行(没有说明...好吧应该是我智障这都不知道... #include<cstdio> #inclu ...

  6. CJOJ 1331 【HNOI2011】数学作业 / Luogu 3216 【HNOI2011】数学作业 / HYSBZ 2326 数学作业(递推,矩阵)

    CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异 ...

  7. [luogu P3216] [HNOI2011]数学作业

    [luogu P3216] [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 ...

  8. P3216 [HNOI2011]数学作业 (矩阵快速幂)

    P3216 [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 NN 和 MM ,要求计算 Concatenate (1 .. N ...

  9. [HNOI2011]数学作业 --- 矩阵优化

    [HNOI2011]数学作业 题目描述: 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算\(Concatenate(1..N)\; Mod\; ...

随机推荐

  1. aws存储桶s3使用

    关于aws s3的使用说明: aws官方文档地址:https://docs.aws.amazon.com/s3/index.html#lang/zh_cn 创建s3与基础使用: 1.登陆aws控制台- ...

  2. ios有些机型input和fixed导致的页面错位问题

    _fixIosInputH () { let [timeout, beforeTop] = [null, 0] $('input, textarea').on('focus', () => { ...

  3. 基于Ubuntu+kodexplorer可道云的私有云网盘

    1.可用的服务器:组装PC机一台,操作系统为Ubuntu 14.04 LTS,无桌面环境,放在机房,使用远程终端进行访问.有安装了Apache2,运行着svn服务.内网IP地址为192.168.0.1 ...

  4. 理解粒子滤波(particle filter)

    1)初始化阶段-提取跟踪目标特征 该阶段要人工指定跟踪目标,程序计算跟踪目标的特征,比如可以采用目标的颜色特征.具体到Rob Hess的代码,开始时需要人工用鼠标拖动出一个跟踪区域,然后程序自动计算该 ...

  5. Java中的==符号与equals()的使用(测试两个变量是否相等)

    Java 程序中测试两个变量是否相等有两种方式:一种是利用 == 运算符,另一种是利用equals()方法. 当使用 == 来判断两个变量是否相等时,如果两个变量是基本类型变量,且都是数值类型(不一定 ...

  6. Refs 和 DOM

    在常规的 React 数据流中,props 是父组件与子组件交互的唯一方式.要修改子元素,你需要用新的 props 去重新渲染子元素.然而,在少数情况下,你需要在常规数据流外强制修改子元素.被修改的子 ...

  7. OGG 问题

    1.启动复制时报 "ERROR OGG-15050 Oracle GoldenGate Delivery, l***.prm: Error loading Java VM runtime l ...

  8. Django_缓存

    目录 Django缓存的介绍 配置(settings.py设置不同缓存介质) 应用(全局.视图函数.模板) 实测 Django缓存的介绍 除了Django这个web框架之外.其他框架都没有缓存.Dja ...

  9. 忘记本地MySQL数据库密码的解决方案。

    忘记本地MySQL数据库密码,解决方案,分以下10个步骤: 参考链接:                  https://blog.csdn.net/weidong_y/article/details ...

  10. Bing词典vs有道词典比对测试报告——体验篇之软件适应性

    联网情况: 在联网情况下,针对每一次查询,有道词典的反应速度明显比必应词典快得多.据我推测有以下两个原因: 有道词典有本地词库而必应词典更多依赖联网. 有道词典的服务器在国内而必应的在国外. 断网情况 ...