5469: [FJOI2018]领导集团问题
5469: [FJOI2018]领导集团问题
题意:
要求在一棵树内选一个子集,满足子集内的任意两个点u,v,如果u是v的祖先,那么u的权值小于等于v。
分析:
dp[u][i]表示在u的子树内,最大的数是i的时候,最多选多少点。其中每个i都要和i+1取max,即每个i维护后缀最大值。
考虑优化:如果不考虑u的权值,对dp数组从后往前差分,然后得到的一定全是正数,而且此时的差分数组就是所有子节点的差分数组的和(即把每一位上的数字求和)。
而合并差分数组是可以做到$O(nlogn)$的,因为只需要在出现的权值的位置+1,所以可以启发式合并。
然后加上w[u]后,考虑差分数组发生什么变化,在w[u]处+1,w[u]前面第一个出现的点-1。于是可以set维护。总复杂度$O(nlog^2n)$
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
multiset<int> dp[N];
vector<int> e[N];
int w[N]; void Merge(int u,int v) {
if (dp[u].size() < dp[v].size()) dp[u].swap(dp[v]);
for (multiset<int> :: iterator it = dp[v].begin(); it != dp[v].end(); it ++) dp[u].insert(*it);
}
void dfs(int u) {
for (int sz = e[u].size(), i = ; i < sz; ++i) dfs(e[u][i]), Merge(u, e[u][i]);
multiset<int> :: iterator it = dp[u].lower_bound(w[u]);
if (it != dp[u].begin()) it --, dp[u].erase(it);
dp[u].insert(w[u]);
}
int main() {
int n = read();
for (int i = ; i <= n; ++i) w[i] = read();
for (int i = ; i <= n; ++i) e[read()].push_back(i);
dfs();
cout << (int)dp[].size();
return ;
}
5469: [FJOI2018]领导集团问题的更多相关文章
- BZOJ 5469: [FJOI2018]领导集团问题 dp+线段树合并
在 dp 问题中,如果发现可以用后缀最大值来进行转移的话可以考虑去查分这个后缀最大值. 这样的话可以用差分的方式来方便地进行维护 ~ #include <bits/stdc++.h> #d ...
- [FJOI2018]领导集团问题
[FJOI2018]领导集团问题 dp[i][j],i为根子树,最上面的值是j,选择的最大值 观察dp方程 1.整体Dp已经可以做了. 2.考虑优美一些的做法: dp[i]如果对j取后缀最大值,显然是 ...
- [FJOI2018]领导集团问题 mulitset合并
P4577 [FJOI2018]领导集团问题 链接 luogu bzoj 他是个重题 bzoj4919: [Lydsy1706月赛]大根堆 代码改改就过了 思路 求树上的lis,要好好读题目的!!! ...
- 【BZOJ5469】[FJOI2018]领导集团问题(动态规划,线段树合并)
[BZOJ5469][FJOI2018]领导集团问题(动态规划,线段树合并) 题面 BZOJ 洛谷 题解 题目就是让你在树上找一个最大的点集,使得两个点如果存在祖先关系,那么就要满足祖先的权值要小于等 ...
- P4577 [FJOI2018]领导集团问题
P4577 [FJOI2018]领导集团问题 我们对整棵树进行dfs遍历,并用一个multiset维护对于每个点,它的子树可取的最大点集. 我们遍历到点$u$时: 不选点$u$,显然答案就为它的所有子 ...
- 题解-FJOI2018 领导集团问题
题面 FJOI2018 领导集团问题 给一棵树 \(T(|T|=n)\),每个点有个权值 \(w_i\),从中选出一个子点集 \(P=\{x\in {\rm node}|x\in T\}\),使得 \ ...
- 「题解报告」P4577 [FJOI2018]领导集团问题
题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...
- 洛谷P4577 [FJOI2018]领导集团问题(dp 线段树合并)
题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不 ...
- 洛谷4577 & LOJ2521:[FJOI2018]领导集团问题——题解
https://www.luogu.org/problemnew/show/P4577 https://loj.ac/problem/2521 参考:https://www.luogu.org/blo ...
随机推荐
- 剑指offer 11二进制中1的个数
输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. java版本: public class Solution { public int NumberOf1(int n) { Strin ...
- for 与forEach的区别
for循环 for循环,通过下标,对循环中的代码反复执行,功能强大,可以通过index取得元素.在处理比较复杂的处理的时候较为方便. foreach循环 foreach,从头到尾,对于集合中的对象遍历 ...
- Web通信协议:OSI、TCP、UDP、Socket、HTTP、HTTPS、TLS、SSL、WebSocket、Stomp
1 各层的位置 1.1 OSI七层模型全景图 OSI是Open System Interconnect的缩写,意为开放式系统互联. 1.2 五层网络协议 在七层的基础上, ...
- 【接口】常见接口集合(返回JSON)
转<JSON校验网站…>http://www.bejson.com/go.html?u=http://www.bejson.com/webInterface.html 这里为大家搜集了一些 ...
- MySQL知识总结(四)二进制日志
1 定义 bin-log日志记录了所有的DDL和DML的语句,但不包括查询的语句,语句以事件的方式保存,描述了数据的更改过程,此日志对发生灾难时数据恢复起到了极为重要的作用. 2 开启 mysql默认 ...
- JS相关知识点总结
一.获取元素方法 1.document.getElementById("元素id号"); 可以使用内置对象document上的getElementById方法来获取页面上设置了id ...
- AbstractApplicationContext 笔记
一.这个类的属性 public abstract class AbstractApplicationContext extends DefaultResourceLoader implements C ...
- socket.io+angular.js+express.js做个聊天应用(二)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/www19940501a/article/details/27585321 接着上一篇 我用的开发工具 ...
- amcharts属性
Amcharts的特点包含: *动画或静态 *价值轴能够扭转 *线性或对数轴的价值尺度 *提前定义或定制的子弹 *定制描写叙述不论什么数据点 *点击栏目/酒吧(可用于钻孔下来图表) *梯度弥漫 *价值 ...
- impala jdbc驱动执行impala sql的一个坑(不支持多行sql)
架构使用spark streaming 消费kafka的数据,并通过impala来插入到kudu中,但是通过对比发现落地到kudu表中的数据比kafka消息数要少,通过后台日志发现,偶发性的出现jav ...