Python统计分析可视化库seaborn(相关性图,变量分布图,箱线图等等)
Visualization of seaborn
seaborn[1]是一个建立在matplot之上,可用于制作丰富和非常具有吸引力统计图形的Python库。Seaborn库旨在将可视化作为探索和理解数据的核心部分,有助于帮人们更近距离了解所研究的数据集。无论是在kaggle官网各项算法比赛中,还是互联网公司的实际业务数据挖掘场景中,都有它的身影。
在本次介绍的这个项目中,我们将利用seaborn库对数据集进行分析,分别展示不同类型的统计图形。
首先,我们将导入可视化所需的所有必要包,我们将使用到的几个包:
Numpy
pandas
matplotlib
seaborn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns tips = pd.read_csv('tips.csv')
tips.head()
各属性相关性
# 相关性
tips.corr()
Out[2]:
total_bill tip size
total_bill 1.000000 0.675734 0.598315
tip 0.675734 1.000000 0.489299
size 0.598315 0.489299 1.000000
pair plot图
#相关性图 很壮观
sns.pairplot(tips)
看图说话:这些图展现了数据集中消费总额、小费金额以及顾客数量三个特征(变量)之间的联系。
#相关性图,和某一列的关系
sns.pairplot(tips ,hue ='sex', markers=["o", "s"])
# 相关性热力图
sns.heatmap(tips.corr())
看图说话:热力图可用来显示两变量之间的相关性,在这里两变量间对应的矩形框的颜色越浅,代表两者之间越具有相关性。
# 分层相关性热力图
sns.clustermap(tips.corr())
g = sns.PairGrid(tips)
g.map_diag(sns.distplot)
g.map_upper(plt.scatter)
g.map_lower(sns.kdeplot)
看图说话:这个厉害了。在pair grid图中,你可以根据自己需求,在这里呈现上述介绍的各种类型的图形。
单个属性的分布
dist plot图
sns.distplot(tips['total_bill'])
sns.distplot(tips['total_bill'],kde = False)
看图说话:上图显示,顾客在餐厅的消费总金额主要是在5-35的范围内分布的。
count plot图
sns.countplot(x = 'smoker', data = tips)
看图说话:上图显示,来餐厅就餐的顾客,不抽烟者比会抽烟者多
sns.countplot(x = 'size', data = tips)
看图说话:上图显示,2个人来餐厅就餐的总次数多一些。
rug plot图
sns.rugplot(tips['total_bill'])
看图说话:上图呈现的是,顾客就餐消费总额在各个值上的边缘分布。
kde plot图
sns.kdeplot(tips['total_bill'], shade=True)
看图说话:KDE代表内核密度估计,它也显示了各个消费总金额数值的统计分布。
两两属性的相关性图
joint plot图
sns.jointplot(x = 'total_bill', y = 'tip', data = tips)
看图说话:上图显示,顾客主要消费水平在10-30远之间,而此时,对应给侍者小费的钱在1-5元之间。
sns.jointplot(x = 'total_bill', y = 'tip', data = tips ,kind = 'hex')
另一种清晰地可视化视图,颜色的深度代表频次。
sns.jointplot(x = 'total_bill', y = 'tip', data = tips ,kind = 'reg')
看图说话:通过做一条简单的回归线,它表明了小费的金额是随着总账单金额的增加而增加的。
sns.jointplot(x = 'total_bill', y = 'tip', data = tips ,kind = 'kde')
另一种可视化统计图:某个区域越暗,表明这个区域对应的频次越多。
box plot图
sns.boxplot(x = 'day', y= 'total_bill', data = tips)
看图说话:上图显示大部分账单是在周六和周日支付的。
sns.boxplot(x = 'day', y= 'total_bill', data = tips, hue = 'sex')
看图说话:在上面的图表中你可以看到,在周六时,女性买单的次数会比男性多。(难道是因为买买买,男性付了好多钱,女性为了弥补男性的心里落差,然后请吃饭?哈哈)
violin plot
sns.violinplot(x = 'day', y= 'total_bill', data = tips)
看图说话:voilin plot和box plot很相似,但它结合了box plot图和密度痕迹。
sns.violinplot(x = 'day', y= 'total_bill', data = tips, hue = 'sex', split = True)
看图说话:增加了性别的区分
strip plot图
sns.stripplot(x = 'day', y = 'total_bill', data = tips)
看图说话:这幅图呈现的是周四、周五、周六和周日这四天,顾客消费总额的散点图。
sns.stripplot(x = 'day', y = 'total_bill', data = tips, jitter= True,hue = 'sex', dodge = True)
看图说话:和上图一样,只不过对性别进行了区别。
swarm plot图
sns.swarmplot(x = 'day', y = 'total_bill', data = tips)
看图说话:Swarn plot和stripplot比较类似,但Swarn plot的不同之处在于它不会重叠数据点。
factor plot图
sns.factorplot(x = 'day', y = 'total_bill', kind = 'box', data = tips)
看图说话:在factorplot图中,你可以给出任何你需要显示的图形。
Python统计分析可视化库seaborn(相关性图,变量分布图,箱线图等等)的更多相关文章
- Matplotlib数据可视化(6):饼图与箱线图
In [1]: from matplotlib import pyplot as plt import numpy as np import matplotlib as mpl mpl.rcParam ...
- 扩增子图表解读1箱线图:Alpha多样性
箱线图 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在宏基因组领域,常用于展示样品组中各样品Alpha多样性的分布 第一种情 ...
- 第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方 ...
- 箱线图(boxplot)简介与举例
简述: 盒图是在1977年由美国的统计学家约翰·图基(John Tukey)发明的.它由五个数值点组成:最小值(min),下四分位数(Q1),中位数(median),上四分位数(Q3),最大值(m ...
- 箱线图boxplot
箱线图boxplot--展示数据的分布 图表作用: 1.反映一组数据的分布特征,如:分布是否对称,是否存在离群点 2.对多组数据的分布特征进行比较 3.如果只有一个定量变量,很少用箱线图去看数据的分布 ...
- 扩增子统计绘图1箱线图:Alpha多样性
绘制Alpha多样性线箱图 绘图和统计全部为R语言,建议复制代码,在Rstuido中运行,并设置工作目录为存储之前分析结果文件的result目录 # 运行前,请在Rstudio中菜单栏选择“Sessi ...
- pyhton中matplotlib箱线图的绘制(matplotlib双轴图、箱线图、散点图以及相关系数矩阵图))
//2019.07.23 1.箱形图,又称为盒式图,一般可以很好地反映出数据分布的特征,也可以进行多项数据之间分布特征的比较,它主要包含五个基础数据:中位数,两个上下分位数以及上下边缘线数据 其中的一 ...
- Matlab boxplot for Multiple Groups(多组数据的箱线图)
在画之前首先介绍一下Matlab boxplot,下面这段说明内容来自http://www.plob.org/2012/06/10/2153.html 由于matlab具有强大的计算功能,用其统计 ...
- Matplotlib学习---用matplotlib画箱线图(boxplot)
箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分 ...
随机推荐
- 在线p图网址
在线P图网址 如果你是简易的P图,不用那么麻烦的去下载安装Photoshop,可以使用以下网址在线编辑 https://www.uupoop.com/ps/?hmsr=ps_menu
- idou老师教你学istio2:监控能力介绍
我们知道每个pod内都会有一个Envoy容器,其具备对流入和流出pod的流量进行管理,认证,控制的能力.Mixer则主要负责访问控制和遥测信息收集. 如拓扑图所示,当某个服务被请求时,首先会请求ist ...
- Kinect 深度测量原理
和其他摄像机一样,近红外摄像机也有视场.Kinect摄像机的视野是有限的,如下图所示: 如图,红外摄像机的视场是金字塔形状的.离摄像机远的物体比近的物体拥有更大的视场横截面积.这意味着影像的高度和宽度 ...
- idea将普通目录转换为模块maven module。
假如你想把aaa这个目录改为像common一样的Module,在aaa目录下新建一个同名的aaa.iml,然后粘贴这段代码 <?xml version="1.0" encod ...
- 开放式最短路径优先OSPF
1.OSPF基本知识 OSPF作为基于链路状态的协议,解决了RIP在收敛慢,路由环路,可扩展性差等问题,还有以下优点: 采用组播方式发布报文,可以减少对其他不运行ospf路由器的影响 ospf直尺无类 ...
- c语言1-2019秋作业02
格式: 这个作业属于那个课程 C语言程序设计I 这个作业要求在哪里 http://edu.cnblogs.com/campus/zswxy/SE2019-3/homework/8688 我在这个课程的 ...
- 题解 [BZOJ4710] 分特产
题面 解析 step 1 我们先考虑下有人没有的情况吧, 那对于每个特产就是放隔板的情况了, 设\(a[i]\)为第\(i\)个特产的个数, 那么第\(i\)个特产的方案数就是\(C_{a[i]+n- ...
- 【Wince-截图】对Wince进行截图
对Wince进行截图 方法一 使用Wince桌面助手对Wince进行截图 PC通过USB成功连接到手持机 打开Wince桌面助手CERHOST.exe程序 File->Capture进行截图 C ...
- 解决Spring AOP Controller 不生效
在spring-mvc.xml文件中,进行以下配置,就可以实现在Controller中, 方法一:最简单的,在spring-mvc.xml配置文件中,添加以下语句 spring-mvc.xml < ...
- andSelf() V1.2 加入先前所选的加入当前元素中
andSelf() V1.2概述 加入先前所选的加入当前元素中 对于筛选或查找后的元素,要加入先前所选元素时将会很有用.直线电机生产厂家 从jQuery1.8开始,.andSelf()方法已经被标注过 ...