【CUDA 基础】2.3 组织并行线程
title: 【CUDA 基础】2.3 组织并行线程
categories:
- CUDA
- Freshman
tags: - Thread
- Block
- Grid
toc: true
date: 2018-03-09 21:00:38

Abstract: 本文介绍CUDA模型中的线程组织模式
Keywords: Thread,Block,Grid
开篇废话
一天写两段废话也是有点累了,天天写废话,后面可以开个系列叫做废话。写一句吧,做研究别有民科精神就好,用自己的理论A证明自己的理论B,在用理论B证明理论A的这种循环证明,还坚持不懈的那种不可取。
2.0 CUDA编程模型中我们大概的介绍了CUDA编程的几个关键点,包括内存,kernel,以及今天我们要讲的线程组织形式,2.0中还介绍了每个线程的编号是依靠,块的坐标(blockIdx.x等),网格的大小(gridDim.x 等),线程编号(threadIdx.x等),线程的大小(tblockDim.x等)
这一篇我们就详细介绍每一个线程是怎么确定唯一的索引,然后建立并行计算,并且不同的线程组织形式是怎样影响性能的:
- 二维网格二维线程块
- 一维网格一维线程块
- 二维网格一维线程块
使用块和线程建立矩阵索引
多线程的优点就是每个线程处理不同的数据计算,那么怎么分配好每个线程处理不同的数据,而不至于多个不同的线程处理同一个数据,或者避免不同的线程没有组织的乱访问内存。如果多线程不能按照组织合理的干活,那么就相当于一群没训练过的哈士奇拉雪橇,往不同的方向跑,那么是没办法前进的,必须有组织,有规则的计算才有意义。
我们的线程模型前面2.0中已经有个大概的介绍,但是下图可以非常形象的反应线程模型,不过注意硬件实际的执行和存储不是按照图中的模型来的,大家注意区分:

这里(ix,iy)就是整个线程模型中任意一个线程的索引,或者叫做全局地址,局部地址当然就是(threadIdx.x,threadIdx.y)了,当然这个局部地址目前还没有什么用处,他只能索引线程块内的线程,不同线程块中有相同的局部索引值,比如同一个小区,A栋有16楼,B栋也有16楼,A栋和B栋就是blockIdx,而16就是threadIdx啦
图中的横坐标就是:
ix=threadIdx.x+blockIdx.x×blockDim.x
ix=threadIdx.x+blockIdx.x \times blockDim.x
ix=threadIdx.x+blockIdx.x×blockDim.x
纵坐标是:
iy=threadIdx.y+blockIdx.y×blockDim.y
iy=threadIdx.y+blockIdx.y \times blockDim.y
iy=threadIdx.y+blockIdx.y×blockDim.y
这样我们就得到了每个线程的唯一标号,并且在运行时kernel是可以访问这个标号的。前面讲过CUDA每一个线程执行相同的代码,也就是异构计算中说的多线程单指令,如果每个不同的线程执行同样的代码,又处理同一组数据,将会得到多个相同的结果,显然这是没意义的,为了让不同线程处理不同的数据,CUDA常用的做法是让不同的线程对应不同的数据,也就是用线程的全局标号对应不同组的数据。
设备内存或者主机内存都是线性存在的,比如一个二维矩阵 (8×6)(8\times 6)(8×6),存储在内存中是这样的:

我们要做管理的就是:
- 线程和块索引(来计算线程的全局索引)
- 矩阵中给定点的坐标(ix,iy)
- (ix,iy)对应的线性内存的位置
线性位置的计算方法是:
idx=ix+iy∗nx
idx=ix+iy*nx
idx=ix+iy∗nx
我们上面已经计算出了线程的全局坐标,用线程的全局坐标对应矩阵的坐标,也就是说,线程的坐标(ix,iy)对应矩阵中(ix,iy)的元素,这样就形成了一一对应,不同的线程处理矩阵中不同的数据,举个具体的例子,ix=10,iy=10的线程去处理矩阵中(10,10)的数据,当然你也可以设计别的对应模式,但是这种方法是最简单出错可能最低的。
我们接下来的代码来输出每个线程的标号信息:
#include <cuda_runtime.h>
#include <stdio.h>
#include "freshman.h"
__global__ void printThreadIndex(float *A,const int nx,const int ny)
{
int ix=threadIdx.x+blockIdx.x*blockDim.x;
int iy=threadIdx.y+blockIdx.y*blockDim.y;
unsigned int idx=iy*nx+ix;
printf("thread_id(%d,%d) block_id(%d,%d) coordinate(%d,%d)"
"global index %2d ival %2d\n",threadIdx.x,threadIdx.y,
blockIdx.x,blockIdx.y,ix,iy,idx,A[idx]);
}
int main(int argc,char** argv)
{
initDevice(0);
int nx=8,ny=6;
int nxy=nx*ny;
int nBytes=nxy*sizeof(float);
//Malloc
float* A_host=(float*)malloc(nBytes);
initialData(A_host,nxy);
printMatrix(A_host,nx,ny);
//cudaMalloc
float *A_dev=NULL;
CHECK(cudaMalloc((void**)&A_dev,nBytes));
cudaMemcpy(A_dev,A_host,nBytes,cudaMemcpyHostToDevice);
dim3 block(4,2);
dim3 grid((nx-1)/block.x+1,(ny-1)/block.y+1);
printThreadIndex<<<grid,block>>>(A_dev,nx,ny);
CHECK(cudaDeviceSynchronize());
cudaFree(A_dev);
free(A_host);
cudaDeviceReset();
return 0;
}
这段代码输出了一组我们随机生成的矩阵,并且核函数打印自己的线程标号,注意,核函数能调用printf这个特性是CUDA后来加的,最早的版本里面不能printf,输出结果:

由于截图不完全,上面有一段打印信息没贴全,但是我们可以知道每一个线程已经对应到了不同的数据,接着我们就要用这个方法来进行计算了,最简单的当然就是二维矩阵加法啦。
二维矩阵加法
完整内容参考https://face2ai.com/CUDA-F-2-3-组织并行线程/
【CUDA 基础】2.3 组织并行线程的更多相关文章
- CUDA编程模型——组织并行线程2 (1D grid 1D block)
在”组织并行编程1“中,通过组织并行线程为”2D grid 2D block“对矩阵求和,在本文中通过组织为 1D grid 1D block进行矩阵求和.一维网格和一维线程块的结构如下图: 其中,n ...
- 【CUDA 基础】3.2 理解线程束执行的本质(Part I)
title: [CUDA 基础]3.2 理解线程束执行的本质(Part I) categories: CUDA Freshman tags: 线程束分化 CUDA分支 toc: true date: ...
- CUDA编程模型——组织并行线程3 (2D grid 1D block)
当使用一个包含一维块的二维网格时,每个线程都只关注一个数据元素并且网格的第二个维数等于ny,如下图所示: 这可以看作是含有二维块的二维网格的特殊情况,其中块儿的第二个维数是1.因此,从块儿和线程索引到 ...
- 【CUDA 基础】3.6 动态并行
title: [CUDA 基础]3.6 动态并行 categories: - CUDA - Freshman tags: - 动态并行 - 嵌套执行 - 隐式同步 toc: true date: 20 ...
- 《GPU高性能编程CUDA实战》第五章 线程并行
▶ 本章介绍了线程并行,并给出四个例子.长向量加法.波纹效果.点积和显示位图. ● 长向量加法(线程块并行 + 线程并行) #include <stdio.h> #include &quo ...
- 【CUDA 基础】5.6 线程束洗牌指令
title: [CUDA 基础]5.6 线程束洗牌指令 categories: - CUDA - Freshman tags: - 线程束洗牌指令 toc: true date: 2018-06-06 ...
- CUDA基础介绍
一.GPU简介 1985年8月20日ATi公司成立,同年10月ATi使用ASIC技术开发出了第一款图形芯片和图形卡,1992年4月ATi发布了Mach32图形卡集成了图形加速功能,1998年4月ATi ...
- 【CUDA 基础】5.3 减少全局内存访问
title: [CUDA 基础]5.3 减少全局内存访问 categories: - CUDA - Freshman tags: - 共享内存 - 归约 toc: true date: 2018-06 ...
- 【CUDA 基础】5.2 共享内存的数据布局
title: [CUDA 基础]5.2 共享内存的数据布局 categories: - CUDA - Freshman tags: - 行主序 - 列主序 toc: true date: 2018-0 ...
随机推荐
- JS中的继承(上)
JS中的继承(上) 学过java或者c#之类语言的同学,应该会对js的继承感到很困惑--不要问我怎么知道的,js的继承主要是基于原型(prototype)的,对js的原型感兴趣的同学,可以了解一下我之 ...
- dgv数据绑定后,添加行遇到过的问题并解决
1. 当控件被数据绑定时,无法以编程方式向 DataGridView 的行集合中添加行 解决方法:((DataTable)Dgv.DataSource).Rows.Add("", ...
- C#等比列放大缩小图片
public Bitmap ChangeImgSize(Image bit, double Multiple) { Bitmap newBitmap ...
- Spark 源码和应用开发环境的构建
引言 Spark 现在无疑是大数据领域最热门的技术之一,读者很容易搜索到介绍如何应用 Spark 技术的文章,但是作为开发人员,在了解了应用的概念之后,更习惯的是打开开发环境,开发一些应用来更深入的学 ...
- 409 Conflict - PUT https://registry.npm.taobao.org/-/user/org.couchdb.user:zphtown - [conflict] User xxx already exists
解决方法cmd执行 npm config set registry https://registry.npmjs.org/ 为什么,参考此文档:https://blog.csdn.net/adc_go ...
- 实现双向绑定Proxy比defineproperty优劣如何?
前言 双向绑定其实已经是一个老掉牙的问题了,只要涉及到MVVM框架就不得不谈的知识点,但它毕竟是Vue的三要素之一. Vue三要素 响应式: 例如如何监听数据变化,其中的实现方法就是我们提到的双向绑定 ...
- 不支持javascript的浏览器将JS脚本显示为页面内容
不支持javascript的浏览器将JS脚本显示为页面内容.为了防止这种情况发生,您可以使用这样的HTML注释标记:<html ><体><script type=“tex ...
- 如何源码编译安装并控制nginx
安装nginx 注意 Linux操作系统需要2.6及其以上的内核(支持epoll) 使用nginx的必备软件 gcc编辑器 yum -y install gcc gcc-c++ pcre库(支持正则表 ...
- maven入门-- part5 本地仓库,远程仓库,私服
解读Maven在仓库中的存储路径: 1.基于groupId准备路径,将句点分隔符转成路径分隔符,就是将 "." 转换成 "/" ; example: org ...
- Delphi Android拍照报错
打开拍照提示以上错误,解决方式