DRL Hands-on book
代码:https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Chapter 1 What is Reinforcement Learning
Learning - supervised, unsupervised, and reinforcement
RL is not completely blind as in an unsupervised learning setup--we have a reward system.
(1) life is suffering, which could be totally wrong. In machine learning terms, it can be rephrased as having non-i.i.d data.
(2) exploration/exploitation dilemma is one of the open fundamental question in RL.
(3) the third complication factor lays in the fact that reward can be seriously delayed from actions.
RL fromalisms and realtions
RL entities and their communications
- Agent和Environment是图的两个node
- Actions作为edge由Agent指向Environment
- Rewards和Observations作为edge由Environment指向Agent
Reward
We don't define how frequently the agent receives this reward. In the case of once-in-a-lifetime reward systems, all rewards except the last one will be zero.
The agent
The environment
Action
two types of actions: discrete or continuous.
Observations
Markov decision process
It is the theoretical foundation of RL, which makes it possible to start moving toward the methods used to solve the RL problem.
we start from the simplest case of a Markov Process(also known as a Markov chain), then extend it with rewards, which will turn it into a Markov reward processes. Then we'll put this idea into one other extra envelop by adding actions, which will lead us to Markov Decision Processes.
Markov process
you can always make your model more complex by extending your state space, which will allow you to capture more dependencies in the model at the cost of a large state space.
you can capture transition probabilities with a transition matrix, which is a square matrix of the size NxN, where N is the number of states in your model.
可以根据观测的episodes来估计transition matrix
Markov reward process
first thing is to add reward to Markov process model.
representation: reward transition matrix or a more compact representation, which is applicable only if the reward value depends only on the target state, which is not always the case.
second thing is to add discount factor gamma(from 0 to 1).
Markov decision process
add a dimension 'action' to transition matrix.
Chapter 2 OpenAI Gym
Chapter 3 Deep Learning with PyTorch
Chapter 4 The Cross-Entropy Method
Taxonomy of RL methods
- Model-free or model-based
- Value-based or policy-based
- On-policy or off-policy
Practional cross-entropy
DRL Hands-on book的更多相关文章
- Drools mvel方言drl断点调试方法
开发环境:myeclipse2014, jdk1.8.0.91,drools6.4.0.Final, drools-eclipse-plugin,mvel2-2.2.6.Final问题描述:drl使 ...
- DRL之:策略梯度方法 (Policy Gradient Methods)
DRL 教材 Chpater 11 --- 策略梯度方法(Policy Gradient Methods) 前面介绍了很多关于 state or state-action pairs 方面的知识,为了 ...
- 基于DRL和TORCS的自动驾驶仿真系统——之环境配置
基于DRL和TORCS的自动驾驶仿真系统 --之环境配置 玩TORCS和DRL差不多有一整年了,开始的摸爬滚打都是不断碰壁过来的,近来在参与CMU的DRL10703课程学习和翻译志愿者工作,也将自己以 ...
- DRL前沿之:Benchmarking Deep Reinforcement Learning for Continuous Control
1 前言 Deep Reinforcement Learning可以说是当前深度学习领域最前沿的研究方向,研究的目标即让机器人具备决策及运动控制能力.话说人类创造的机器灵活性还远远低于某些低等生物,比 ...
- DRL强化学习:
IT博客网 热点推荐 推荐博客 编程语言 数据库 前端 IT博客网 > 域名隐私保护 免费 DRL前沿之:Hierarchical Deep Reinforcement Learning 来源: ...
- drools原生drl规则文件的使用
在初识drools中对drl文件进行了简单的介绍.这里举个例子来具体说明下.主要是写了规则之后我们如何用java代码来run起来. drl文件内容如下: rule "ageUp12" ...
- Reinforcement Learning,微信公众号:DRL学习
欢迎大家关注微信公众号:DRL学习,我们一起来学习强化学习和深度强化学习的算法及现状应用问题. 强化学习简单说就是学习如何最大化未来奖励的预期总和,以及agent学会在环境中做出的行动序列,其中随机状 ...
- Drools规则引擎详解-常用的drl实例
package droolsDemo //说明:每个 drl 都必须声明一个包名,这个包名与 Java 里面的不同,它不需要与文件夹的层次结构一致, //主要用于可以根据kmodule.xml中不同的 ...
- allegro生成光绘文件时,通过cam打开,*.drl钻孔文件不识别,为Unknow类型
生成钻孔文件时,NC_Parameters中,应该选Absolute
- DRL 教程 | 如何保持运动小车上的旗杆屹立不倒?TensorFlow利用A3C算法训练智能体玩CartPole游戏
本教程讲解如何使用深度强化学习训练一个可以在 CartPole 游戏中获胜的模型.研究人员使用 tf.keras.OpenAI 训练了一个使用「异步优势动作评价」(Asynchronous Advan ...
随机推荐
- luogu题解P4198楼房重建--线段树神操作
题目链接 https://www.luogu.org/problemnew/show/P4198 分析 一句话题意,一条数轴上有若干楼房,坐标为\(xi\)的楼房有高度\(hi\),那么它的斜率为\( ...
- Selenium 基本使用
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.c ...
- 【转载】linux SUID SGID
作者:sparkdev 出处:http://www.cnblogs.com/sparkdev/ setuid 和 setgid 分别是 set uid ID upon execution 和 set ...
- CSS 使用calc()获取当前可视屏幕高度
来自:https://blog.csdn.net/qq_32063079/article/details/89766442 先了解一下CSS3的相对长度单位(参考详细教程) : 相对长度单位指定了一个 ...
- element-ui el-table表格排序sortable参数解析
表格组件的排序功能,点击排序表头可以进行升序和降序进行排序 页面代码,基本上排序的参数都使用了 <el-table :data="tableData" style=" ...
- vue+axios请求头封装
import { mapMutations } from 'vuex' import axios from 'axios' import { Toast } from 'mint-ui'; impor ...
- Delphi WaitCommEvent函数
- yocto project user’s guide
http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html 参考手册 http://www.yoctoproject.org/doc ...
- 二、Nginx多站点配置(参考宝塔的)分析
一.基于宝塔配置文件分析(站的配置文件) 新增的站点配置即添加server并包含在nginx内 查找文件: 文件内容: 二.伪静态 伪静态是一种可以把文件后缀改成任何可能的一种方法,如果我想把php文 ...
- 版本控制工具 svn 二
一.图标 忽略图标 实例 二.版本 回滚 tortoisesvn ——> 版本更新——>一般情况下使用 “显示日子” 回滚 三.版本冲突 版本冲突产生原因 多人先后提交文件,每个人提交的文 ...