POJ-3522 Slim Span(最小生成树)
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 8633 | Accepted: 4608 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
Source
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;
int f[];
int n,m;
struct Edge
{
int u,v,w;
};
Edge edge[]; bool cmp(Edge a,Edge b)
{
return a.w<b.w;
} int Find(int x)
{
int r = x;
while(r!=f[r])
{
r = f[r];
}
while(x!=f[x])
{
int j = f[x];
f[x] = f[r];
x = j;
}
return x;
} void merge2(int x,int y)
{
int fx=Find(x);
int fy=Find(y);
if(fx!=fy)
{
f[fy] = fx;
}
} int Cal(int x)
{
int i;
for(i=;i<=n;i++)
{
f[i] = i;
}
int mind=INF,maxd=-;
int cnt=;
for(i=x;i<m;i++)
{
int u=edge[i].u , v=edge[i].v , w=edge[i].w;
int fu=Find(u),fv=Find(v);
if(fu!=fv)
{
f[fu] = fv;
cnt++;
mind = min(mind,w);
maxd = max(maxd,w);
merge2(u,v);
}
if(cnt==n-)
break;
}
if(cnt == n-)
{
int ans = maxd-mind;
return ans;
}
return -;
} int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
if(n==&&m==)
{
break;
}
int i,a,b,w;
for(i=;i<m;i++)
{
scanf("%d %d %d",&a,&b,&w);
edge[i].u=a;
edge[i].v=b;
edge[i].w=w;
}
sort(edge,edge+m,cmp);
int ans=INF;
for(i=;i<m;i++)
{
if(m-i<n-)
{
break;
}
int d = Cal(i);
if(d!=- && d<ans)
{
ans = d;
}
}
if(ans == INF)
printf("-1\n");
else
printf("%d\n",ans);
}
}
POJ-3522 Slim Span(最小生成树)的更多相关文章
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- uva1395 - Slim Span(最小生成树)
先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...
随机推荐
- 如何查询oracle中的关键字
如何查询oracle中的关键字,执行: select * from v$reserved_words
- docker 初识之二(简单发布ASP.NET Core 网站)
在发布ASP.NET Core网站以前,先介绍一下DaoCloud 一个免费的docker云容器服务平台.登陆官方网站,创建一台docker主机,这台主机有120分钟的使用时间,对于鄙人学习使用正好合 ...
- JAVAEE学习笔记
以后创建常量有三个名字:Constant SystemParas StaticValue 上限或者下限命名 max_ min_ 包含的范围命名 first l ...
- AS中layout_gravity与gravity的区别
gravity 这个英文单词是重心的意思,在这里就表示停靠位置的意思. android:layout_gravity 和 android:gravity 的区别 从名字上可以看到,android:gr ...
- 【Android Developers Training】 9. 覆盖于布局之上的Action Bar
注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...
- 遇到scan configurtation CDT builder等的错误
可以直接propoerty中的builder中把这两项删除
- 怎么利用composer创建laravel项目
前提:已经安装了composer的电脑 创建laravel项目: 第一步: 找到你要创建文件的地方 然后打开doc,输入:composer create_project laravel/laravel ...
- 【转】Header Only Library的介绍
什么是Header Only Library Header Only Library把一个库的内容完全写在头文件中,不带任何cpp文件. 这是一个巧合,决不是C++的原始设计. 第一次这么做估计是ST ...
- 二、Solr单机版的搭建
1.1. 运行环境 solr 需要运行在一个Servlet容器中,Solr4.10.3要求jdk使用1.7以上,Solr默认提供Jetty(java写的Servlet容器),本次使用Tocmat作为S ...
- jqueryEasyUI列表
背景 因为学习大数据开发这段时间,同时也学习java的一些知识.利用了近五个月的时间来投入学习,当然我选择了一个机构,因为已经做了四年多的开发,所以即使不是做的java但是java还是了解的,这段时间 ...