Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 8633   Accepted: 4608

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

 
题目大意:条件给你n个点,m条边,求n-1条边图连通的情况下最大边与最小边的差的最小值。
 
解题思路:根据条件先建图,然后按边排序,直接枚举,从第x小的边开始建树,(此处需要注意每次从x小的边开始建立一棵树后直接x++进行下次简树,因为已经按边排序好了,每次得到的肯定是x情况下差最小的情况),没有太多技巧,枚举+建树就行了。
 
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;
int f[];
int n,m;
struct Edge
{
int u,v,w;
};
Edge edge[]; bool cmp(Edge a,Edge b)
{
return a.w<b.w;
} int Find(int x)
{
int r = x;
while(r!=f[r])
{
r = f[r];
}
while(x!=f[x])
{
int j = f[x];
f[x] = f[r];
x = j;
}
return x;
} void merge2(int x,int y)
{
int fx=Find(x);
int fy=Find(y);
if(fx!=fy)
{
f[fy] = fx;
}
} int Cal(int x)
{
int i;
for(i=;i<=n;i++)
{
f[i] = i;
}
int mind=INF,maxd=-;
int cnt=;
for(i=x;i<m;i++)
{
int u=edge[i].u , v=edge[i].v , w=edge[i].w;
int fu=Find(u),fv=Find(v);
if(fu!=fv)
{
f[fu] = fv;
cnt++;
mind = min(mind,w);
maxd = max(maxd,w);
merge2(u,v);
}
if(cnt==n-)
break;
}
if(cnt == n-)
{
int ans = maxd-mind;
return ans;
}
return -;
} int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
if(n==&&m==)
{
break;
}
int i,a,b,w;
for(i=;i<m;i++)
{
scanf("%d %d %d",&a,&b,&w);
edge[i].u=a;
edge[i].v=b;
edge[i].w=w;
}
sort(edge,edge+m,cmp);
int ans=INF;
for(i=;i<m;i++)
{
if(m-i<n-)
{
break;
}
int d = Cal(i);
if(d!=- && d<ans)
{
ans = d;
}
}
if(ans == INF)
printf("-1\n");
else
printf("%d\n",ans);
}
}

POJ-3522 Slim Span(最小生成树)的更多相关文章

  1. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  2. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  3. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  4. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  5. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  6. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  7. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  8. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  9. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  10. uva1395 - Slim Span(最小生成树)

    先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...

随机推荐

  1. 【ASP.NET MVC 牛刀小试】 URL Route

    例子引入 先看看如下例子,你能完全明白吗? using System; using System.Collections.Generic; using System.Linq; using Syste ...

  2. shell中source与sh区别

    shell中使用source conf.sh,是直接运行conf.sh的命令,不创建子shell,类似与html中include,而sh是则创建子shell, 子shell里面 的变量父shell无法 ...

  3. 使用flask开发网站后端

    Flask 是一个用于 Python 的微型网络开发框架,可以用于快速的搭建一个小型的网站. 我的搜索引擎:http://www.abelkhan.com 就是基于flask开发 一个flask的He ...

  4. 4.VUEX到底是什么

    关于vuex类的新闻最近很多,看到眼热就去查了下资料,然后扯出来一堆flux.redux.state.state之类的概念,以及大型工程必要性之类的.看官方手册也是昏昏然. 然而,我还是弄懂了!我准备 ...

  5. java底层学习---1

    JRE: Java Runtime EnvironmentJDK:Java Development Kit JRE顾名思义是java运行时环境,包含了java虚拟机,java基础类库.是使用java语 ...

  6. Openfire4源码部署到eclipse中并编译

    Openfire4源码部署到eclipse中并编译 概述 Openfire是众所周知的基于xmpp协议的IM开源服务,所有操作,配置,监控,调试等以B/S方式进行展示,非常的方便管理员进行管理.它的强 ...

  7. 【笔记】记一次.net语法await和async的异步编程实验与笔记。

    1.实践代码全记录: using System; using System.Collections.Generic; using System.Diagnostics; using System.Li ...

  8. APP测试点归纳

    1.2测试周期 测试周期可按项目的开发周期来确定测试时间,一般测试时间为两三周(即 15个工作日), 根据项目情况以及版本质量可适当缩短或延长测试时间.正式测试前先向主管确认项目排期. 1.3测试资源 ...

  9. 用py2exe将python文件转换成exe可执行程序

    1.首先需要安装py2exe模块,下载地址:http://www.lfd.uci.edu/~gohlke/pythonlibs/ 然后用pip install 命令安装py2exe模块,如果你用的py ...

  10. VMvare虚拟机的安装及新建虚拟机.

    一.VMvare虚拟机的安装 1.首先双击--你下载的安装包,这里我分享百度云盘,供大家下载:http://pan.baidu.com/s/1jImQSZG 2.VMware Workstation ...