Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 8633   Accepted: 4608

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

 
题目大意:条件给你n个点,m条边,求n-1条边图连通的情况下最大边与最小边的差的最小值。
 
解题思路:根据条件先建图,然后按边排序,直接枚举,从第x小的边开始建树,(此处需要注意每次从x小的边开始建立一棵树后直接x++进行下次简树,因为已经按边排序好了,每次得到的肯定是x情况下差最小的情况),没有太多技巧,枚举+建树就行了。
 
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;
int f[];
int n,m;
struct Edge
{
int u,v,w;
};
Edge edge[]; bool cmp(Edge a,Edge b)
{
return a.w<b.w;
} int Find(int x)
{
int r = x;
while(r!=f[r])
{
r = f[r];
}
while(x!=f[x])
{
int j = f[x];
f[x] = f[r];
x = j;
}
return x;
} void merge2(int x,int y)
{
int fx=Find(x);
int fy=Find(y);
if(fx!=fy)
{
f[fy] = fx;
}
} int Cal(int x)
{
int i;
for(i=;i<=n;i++)
{
f[i] = i;
}
int mind=INF,maxd=-;
int cnt=;
for(i=x;i<m;i++)
{
int u=edge[i].u , v=edge[i].v , w=edge[i].w;
int fu=Find(u),fv=Find(v);
if(fu!=fv)
{
f[fu] = fv;
cnt++;
mind = min(mind,w);
maxd = max(maxd,w);
merge2(u,v);
}
if(cnt==n-)
break;
}
if(cnt == n-)
{
int ans = maxd-mind;
return ans;
}
return -;
} int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
if(n==&&m==)
{
break;
}
int i,a,b,w;
for(i=;i<m;i++)
{
scanf("%d %d %d",&a,&b,&w);
edge[i].u=a;
edge[i].v=b;
edge[i].w=w;
}
sort(edge,edge+m,cmp);
int ans=INF;
for(i=;i<m;i++)
{
if(m-i<n-)
{
break;
}
int d = Cal(i);
if(d!=- && d<ans)
{
ans = d;
}
}
if(ans == INF)
printf("-1\n");
else
printf("%d\n",ans);
}
}

POJ-3522 Slim Span(最小生成树)的更多相关文章

  1. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  2. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  3. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  4. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  5. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  6. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  7. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  8. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  9. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  10. uva1395 - Slim Span(最小生成树)

    先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...

随机推荐

  1. 常见License错误代码

    2017-06-2816:32:40 -1 找不到许可文件. -2 无效的许可文件语 -3 没有用于此功能的 -4 已达到许可的用户 -5 不存在此功能. -6 许可文件中没有 TCP/IP 端口号, ...

  2. java数组降序排序之冒泡排序

    import java.util.Arrays;//必须加载 class Demo{ public static void main(String []args){ int[] arr={3,54,4 ...

  3. Echarts笔记——使用AJAX填充数据

    最近把编辑器从Sublime换成HBuilder,感觉好用很多啊,可能自己插件没弄好吧.不不过HBuilder的启动速度确实慢,放机械盘启动要7-13秒,还好有固态. 因为项目需要,这周上手了百度的E ...

  4. Azure SQL Database (23) Azure SQL Database Dynamic Data Masking动态数据掩码

    <Windows Azure Platform 系列文章目录> 我们在使用关系型数据的时候,有时候希望: - 管理员admin,可以查看到所有的数据 - 普通用户,某些敏感字段,比如信用卡 ...

  5. Java jvm级别native关键词、JNI详解

    1.native关键词的引入 再完美的编程语言也有自己的不足之处,当然Java也不例外,Java的不足之处除了体现在运行速度(这点往往被一些其他编程语言使用者所诟病)上要比传统的C++慢许多之外,Ja ...

  6. 优雅的封装ajax,含跨域

    之前写过一篇 先定一个小目标,自己封装个ajax,是基于原生js的,也就是jquery中ajax的简化版本实现的思路.众所周知,jquery的ajax是项目中最常用的请求后台的方式,也算是封装的很完美 ...

  7. SSH中的Invalid action class configuration that references an unknown class named.......

    最近用SSH框架做项目的时候页面提交数据到后台,遇到了这个问题,百度了一下,网上的解决办法无非两种: 1.检查struts.xml  ,applicationContext.xml的配置是否正确 2. ...

  8. 设计模式 - 观察者模式(JDK)

    定义:观察者模式定义了对象之间的一对多依赖,这样一来,当一个对象改变状态时,它的所有依赖者都会收到通知并自动更新. 对象:    抽象主题角色:每个抽象主题角色都可以有任意数量的观察者.抽象主题提供可 ...

  9. SQL Server 2008R2的安装

    一.安装前的准备工作:SQL Server 200R2安装包 二.SQL Server2008R2的安装 1.打开SQL Server2008R2的安装包,找到setup.exe 2.双击sql se ...

  10. Apple使用Apache Mesos重建Siri后端服务

    苹果公司宣布,将使用开源的集群管理软件Apache Mesos,作为该公司广受欢迎的.基于iOS的智能个人助理软件Siri的后端服务.Mesosphere的博客指出,苹果已经创建了一个命名为J.A.R ...