深度学习框架-caffe安装

[Mac OSX 10.12]

【参考资源】

1.英文原文:(使用GPU)

[http://hoondy.com/2015/04/03/how-to-install-caffe-on-mac-os-x-10-10-for-dummies-like-me/]

2.基于1的两篇中文博客:

[http://ylzhao.blogspot.kr/2015/04/mac-os-x-1010caffe.html]

[http://www.jianshu.com/p/8795b882ea67]

3.无GPU,仅使用CPU的情况下的配置

[http://blog.csdn.net/u014696921/article/details/52156552]

[http://www.phperz.com/article/16/1006/298567.html]


我的电脑配置

系统:MacBook Pro OS X Sierra 版本10.12.2

CPU:2.7 GHz Intel Core i5

显卡:Intel Iris Graphics 6100 1536 MB

如果显卡是NVIDIA的,可以使用GPU,需要安装cuda,cuda driver和cuDNN GPU库,并且在Makefile配置成使用GPU。参考资源中【1】【2】是有NVIDIA显卡的所以安装了cuda,cuda driver和cuDNN GPU库,最后的caffe的Makefile.config文件中配置成使用GPU。

由于我电脑配置的不是NVIDIA显卡,所以不能使用cuda加速了,所以只能安装个CPU模式。可以忽略安装cuda,cuda driver和cuDNN的安装步骤,最后的caffe的Makefile.config文件中配置成仅使用CPU。

详细安装步骤

Homebrew

1. 根据 http://brew.sh/ 上面的说明安装Homebrew包管理

Anaconda Python

1. 从https://store.continuum.io/cshop/anaconda/下载和安装Anaconda Python包(其中包括Caffe框架用到的hdf5)
2. export PATH=~/anaconda/bin:$PATH

BLAS - Intel MKL

1. 由于Mac OS X操作系统自带的BLAS库存在一些不稳定的问题,因此我选择安装Intel MKL库。如果你是在校大学生,可以使用学校邮箱从https://software.intel.com/en-us/qualify-for-free-software/student页面申请Intel Parallel Studio XE 2017安装包(后面不要忘记在Makefile.config中设置BLAS:=MKL)
2. 确保在安装Intel Parallel XE时选择每一个组件(因为缺省情况下不会安装MKL组件)
3. cd /opt/intel/mkl/lib/
4. sudo ln -s . /opt/intel/mkl/lib/intel64(因为在编译Caffe时Caffe会从MKL的intel64目录中去搜索mkl的库,但是在安装MKL后,MKL的lib目录下并没有intel64这个目录,所以需要建立一个intel64目录到lib目录的软链接)

通过Homebrew安装依赖项

brew edit opencv 在自动打开的vim编辑器中将下面两行
args << "-DPYTHON#{py_ver}_LIBRARY=#{py_lib}/libpython2.7.#{dylib}"
args << "-DPYTHON#{py_ver}_INCLUDE_DIR=#{py_prefix}/include/python2.7"
替换为
args << "-DPYTHON_LIBRARY=#{py_prefix}/lib/libpython2.7.dylib"
args << "-DPYTHON_INCLUDE_DIR=#{py_prefix}/include/python2.7"

vim中具体操作是:

i 从当前光标处进入插入模式,开始修改内容,esc 退出插入模式,:wq 保存修改并退出。

brew install --fresh -vd snappy leveldb gflags glog szip lmdb homebrew/science/opencv
brew install --build-from-source --with-python --fresh -vd protobuf
brew install --build-from-source --fresh -vd boost boost-python

从Github上面克隆Caffe的代码

git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config

配置Makefile.config

1. 设置BLAS := mkl(BLAS (使用intel mkl还是OpenBLAS))
2. 取消USE_CUDNN := 1注释
3. 检查并设置Python路径
- 首先修改文件权限:chmod g+w Makefile.config
- 打开文件进行修改:sudo vim Makefile.config ;按“i”键开始修改,修改 :将# CPU_ONLY = 1前面的#去掉( 由于我没有NVIDIA的显卡,就没有安装CUDA,因此需要打开这个选项) 并按“tab”键,(默认从tab处执行),设置BLAS := mkl,检查并设置python路径,修改结束后按esc键,键入“:wq”保存并退出;

以下是我的Makefile.config中的所有配置:(可以先在命令行中验证一下自己的文件路径,一定要根据自己路径进行设置!)

Refer to http://caffe.berkeleyvision.org/installation.html

# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := mkl
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda
PYTHON_INCLUDE := $(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
$(ANACONDA_HOME)/include \ # Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0 # enable pretty build (comment to see full commands)
Q ?= @

设置环境变量

1. export DYLD_FALLBACK_LIBRARY_PATH=/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/composer_xe_2015.2.132/compiler/lib:/opt/intel/composer_xe_2015.2.132/mkl/lib
  • 必须手动查看自己的文件路径!根据自己的路径添加环境变量,我的路径如下:
export DYLD_FALLBACK_LIBRARY_PATH=$HOME/caffe/.build_release/lib:/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/compiler/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/mkl/lib/

编译Caffe

make clean
make all
make test
make runtest
make pycaffe
make distribute
  • make all的时候注意库的链接路径,make runtest注意,会有这样的一个问题DYLD_FALLBACK_LIBRARY_PATH is cleared by the new System Integrity Protection ,所以要把System Integrity Protection禁止掉:具体操作:电脑重新开机同时按住command+r,进入恢复模式,然后打开终端,输入csrutil disable,就关闭SIP了,重新启动电脑即可。

深度学习框架-caffe安装-环境[Mac OSX 10.12]的更多相关文章

  1. 深度学习框架-caffe安装-Mac OSX 10.12

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...

  2. 深度学习框架Caffe的编译安装

    深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...

  3. 贾扬清分享_深度学习框架caffe

    Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...

  4. 虚拟机VMware 9安装苹果MAC OSX 10.8图文教程

    前些天虚拟机VMware Workstation 9出来,相信大家都已经熟悉VM9了,至于MAC OSX 10.8系统,那也是出来一段时间了,本篇文章就是来讲解VMware Workstation 9 ...

  5. 深度学习框架caffe在ubuntu下的环境搭建

    深度学习实验室服务器系统配置手册 目录:     一,显卡安装     二,U盘启动盘制作     三,系统安装     四,系统的基本配置     五,安装Nvidia驱动     六,安装cuda ...

  6. 深度学习框架caffe/CNTK/Tensorflow/Theano/Torch的对比

    在单GPU下,所有这些工具集都调用cuDNN,因此只要外层的计算或者内存分配差异不大其性能表现都差不多. Caffe: 1)主流工业级深度学习工具,具有出色的卷积神经网络实现.在计算机视觉领域Caff ...

  7. 深度学习框架Keras安装

    环境:Windows 10 64位 版本!版本!版本!不要下载最新版本的! 一点要按照这个来!安装顺序也最好不要错! 首先安装DirectX SDK工具包 ,这是链接:https://www.micr ...

  8. 深度学习框架caffe在macOS Heigh Sierra上安装过程实录

    第一步.安装依赖库 brew install -vd snappy leveldb gflags glog szip lmdb brew tap homebrew/science brew insta ...

  9. 深度学习框架Caffe —— Deep learning in Practice

    因工作交接需要, 要将caffe使用方法及整体结构描述清楚. 鉴于也有同学问过我相关内容, 决定在本文中写个简单的tutorial, 方便大家参考. 本文简单的讲几个事情: Caffe能做什么? 为什 ...

随机推荐

  1. .NET Core 成都线下面基会拉开序幕

    2017年07月29日下午,由 .NET China Foundation 成都小组组织的 .NET Core 成都地区线下技术交流会在成都成华区某茶楼成功举行,这也是成都地区 .NET Core 非 ...

  2. Charles录制App的接口har文件

    Charles录制App的接口har文件 如果我们想录制我们自己App后台请求接口的信息,并生成har文件,要怎么做呢?其实很简单,就是通过Charles,让手机的访问请求走这个Charles代理就行 ...

  3. ES6中的模块

    前面的话 JS用"共享一切"的方法加载代码,这是该语言中最容出错且容易令人感到困惑的地方.其他语言使用诸如包这样的概念来定义代码作用域,但在ES6以前,在应用程序的每一个JS中定义 ...

  4. Redux源码分析之基本概念

    Redux源码分析之基本概念 Redux源码分析之createStore Redux源码分析之bindActionCreators Redux源码分析之combineReducers Redux源码分 ...

  5. 如何将R包安装到自定义路径

    参考  设置环境变量R_LIBS将R包安装到自定义路径   实际上是可以解决问题的, #环境变量完成以后,启动(重启)R,运行 .libPaths() 加载R包时,发现路径仍然未变成自定义的. 那么参 ...

  6. MongoDB安全策略

    一,修改启动端口 mongo的默认端口为27017 如果启用的是27017端口并且在公网上很容易被人攻击,所以第一点我们要修改端口 sudo ./mongod --dbpath=/data/db -- ...

  7. Python 协程总结

    Python 协程总结 理解 协程,又称为微线程,看上去像是子程序,但是它和子程序又不太一样,它在执行的过程中,可以在中断当前的子程序后去执行别的子程序,再返回来执行之前的子程序,但是它的相关信息还是 ...

  8. git入门大全

    前言 以前写个一个git小结,但是实际上并不够用.于是结合实际工作上碰到的一些情况,参考了一些资料,重新总结了一下.目标是在日常工作中不用再去查阅其他的资料了,如果有什么遗漏或者错误的地方,请评论指出 ...

  9. 福科田led漫反射灯条生产工序

    led漫反射灯条简称透镜灯条,它两个其实是一种产品.下面我来讲讲led漫反射灯条的生产工序.首先介绍的是led漫反射灯条的生产总流程. 一.      led漫反射灯条的生产总流程: 1.       ...

  10. windows域与工作组概念

    局域网上的资源需要管理,“域”和“工作组”就是两种不同的网络资源管理模式.那么二者有何区别呢? 工作组 Work Group 在一个网络内,可能有成百上千台电脑,如果这些电脑不进行分组,都列在“网上邻 ...