<题目链接>

题目大意:

Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各界的赞扬。最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一个真龙天子的降生,带领正义打败邪恶。骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出征的。战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的情况),并且,使得这支骑士军团最具有战斗力。为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。

解题分析:

比较经典的基环树(环套树)。本题给出一个$n$条边$n$个点的有向图,我们可以发现,因为本题有向边表示这两个人至多只能出现其中一个,是用来表示一种关系的,所以在实际意义上,完全可以用无向边来代替。于是,本题就转化成了基环树森林,基环树的主要突破口就是要找出每个基环树的环(每个连通分量都是一颗基环树),然后将环中的一条边拆掉,使其变成一棵树,分别以拆掉的边的两个端点作为树的根,然后进行树形DP。本题就变成了对于树上有关系的两个点,只能选一个,使得最后的总价值最大,这就变成了一个比较经典的树形DP模型(比如上司的舞会)。

注意拆环的时候,强制一个点为根,并且不选,因为尽管我们拆除了那条边,但它还是正实存在的,所以只有不选的状态才能避免这两个点都被选中(防止违反题意)。

#include <bits/stdc++.h>
using namespace std; #define clr(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for(int i=s;i<=t;i++)
const int N = 1e6+;
typedef long long ll;
struct Edge{ int to,nxt; }e[N<<];
int n,m,cnt,head[N];
int Ecut,rt,urt;
int w[N],vis[N];
ll dp[N][]; inline void init(){
cnt=;clr(head,-);clr(vis,);clr(dp,);
}
inline void add(int u,int v){ e[cnt]=(Edge){ v,head[u] };head[u]=cnt++; } void dfs(int u,int pre){
vis[u]=;
for(int i=head[u];~i;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
if(!vis[v])dfs(v,u);
else { //如果找到环了
rt=u,urt=v,Ecut=i; //记录下这个环的两个端点,并且记录这个拆除的边
}
}
}
void trdp(int u,int pre){
dp[u][]=w[u]; //表示选当前这个点的价值
dp[u][]=; //表示不选当前这个点的价值
for(int i=head[u];~i;i=e[i].nxt){
int v=e[i].to;
if(i==Ecut || i==(Ecut^) || v==pre)continue;
trdp(v,u);
dp[u][]+=dp[v][];
dp[u][]+=max(dp[v][],dp[v][]);
}
}
int main(){
while(~scanf("%d",&n)){
init();
REP(i,,n){
int now;scanf("%d%d",&w[i],&now);
add(i,now);add(now,i);
}
ll sum=;
REP(i,,n) if(!vis[i]) {
dfs(i,-); //基环树森林,每个连通分量中必有一个环
trdp(rt,-); //以拆分的两个点分别为根,进行树形DP
ll tmp = dp[rt][];
trdp(urt,-);
sum+=max(tmp,dp[urt][]);
}
printf("%lld\n",sum);
}
}

BZOJ 1040 [ZJOI2008]骑士 (基环树+树形DP)的更多相关文章

  1. BZOJ 1040: [ZJOI2008]骑士 基环加外向树

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1190  Solved: 465[Submit][Status] ...

  2. bzoj 1040: [ZJOI2008]骑士 環套樹DP

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1755  Solved: 690[Submit][Status] ...

  3. BZOJ 1040 骑士 基环树 树形DP

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1040 题目大意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫 ...

  4. day 2 下午 骑士 基环树+树形DP

    #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #inc ...

  5. 洛谷 P1453 城市环路 ( 基环树树形dp )

    题目链接 题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域--城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市 ...

  6. bzoj 1040: [ZJOI2008]骑士 树形dp

    题目链接 1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3054  Solved: 1162[Submit][S ...

  7. BZOJ 1040: [ZJOI2008]骑士 [DP 环套树]

    传送门 题意:环套树的最大权独立集 一开始想处理出外向树树形$DP$然后找到环再做个环形$DP$ 然后看了看别人的题解其实只要断开环做两遍树形$DP$就行了...有道理! 注意不连通 然后洛谷时限再次 ...

  8. [BZOJ 1040][ZJOI2008]骑士

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5403  Solved: 2060[Submit][Status ...

  9. Bzoj 1040 [ZJOI2008]骑士 题解

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5368  Solved: 2044[Submit][Status ...

随机推荐

  1. unity2017 光照与渲染(二)FAQs

    FAQ: 场景里的物体没有影子? 1)灯光是否开了影子 2)QualitySettings 中 shadows 的设置 3) 模型MeshRenderer 的 ReciveShadows 和 Cast ...

  2. Windows 好用的护眼软件

    目录 1. 按 2. Windows10自带夜间模式 3. Iris Pro 3.1. 介绍 3.1.1. 保护用眼,改善睡眠 3.1.2. ×9 种不同的预设搭配 3.1.3. 计时器 3.1.4. ...

  3. Git命令——撤销修改

    Git命令 1. 撤销修改 (1) 当改乱了工作区(working directory)某个文件的内容,想直接丢弃工作区中的修改时,用命令git checkout -- file. (2) 当不但改乱 ...

  4. python数据库操作-mysql数据库

    一:连接 1:本地连接 mysql -u用户名 -p密码 2:连接远程服务器 mysql -u用户名 -p密码 -hip地址 -P端口号     线下修改远程服务端上部署的mysql服务器 二:创建数 ...

  5. RMQ Terminology

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11784644.html RMQ模型架构 RMQ Terminology Message 消息,消息是不 ...

  6. common pom

    <dependencies> <dependency> <groupId>com.github.pagehelper</groupId> <art ...

  7. HTML基础—DOM操作

    DOM(Document Object Model文档对象模型) 一个web页面大的展示,是由html标签组合成的一个页面,dom对象实际就是将html标签转换成了一个文档对象.可以通过dom对象中j ...

  8. spring boot构建

    1.新建Maven工程 1.File-->new-->project-->maven project 2.webapp 3.工程名称 k3 2.Maven 三个常用命令 选 项目右击 ...

  9. zabbix4.0 percona插件实现监控mysql

    percona是一款能够详细监控zabbix MySQL的插件 官方下载percona插件 wget https://www.percona.com/downloads/percona-monitor ...

  10. ::before和::after的详细介绍

    原文传送门: https://www.cnblogs.com/staro... 一.介绍 css3为了区分伪类和伪元素,伪元素采用双冒号写法. 常见伪类--:hover,:link,:active,: ...