题目描述

跳跳棋是在一条数轴上进行的。棋子只能摆在整点上。

每个点不能摆超过一个棋子。

我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\),\(c\)这三个位置。

我们要通过最少的跳动把他们的位置移动成\(x\),\(y\),\(z\)。(棋子是没有区别的)跳动的规则很简单,任意选一颗棋子,对一颗中轴棋子跳动。

跳动后两颗棋子距离不变。

一次只允许跳过\(1\)颗棋子。

\(a,b,c,x,y,z \le 1e9\)

Input

第一行包含三个整数,表示当前棋子的位置\(a\), \(b\) ,\(c\)。(互不相同)

第二行包含三个整数,表示目标位置\(x\),\(y\) ,\(z\)。(互不相同)

Output

如果无解,输出一行\(NO\)。如果可以到达,第一行输出\(YES\),第二行输出最少步数。

Sample Input

1 2 3
0 3 5

Sample Output

YES
2

一道非常不错的想法题。

非常强大的建模。。。

对于一个状态\((a,b,c)\),我们保证\(a \le b \le c\);

对于当前状态\((a,b,c)\)可以转移的状态为

中间的\(b\)往两边跳,即\((2*a-b,b,c)\)和\((a,b,2*c-b)\)为\((a,b,c)\)的子节点。

由于,一个棋子只能跳过一个棋子。

所以,\((a,b,c)\)由两边的棋子跳动的转移,只能由距离中轴最近的棋子跳动,将其状态定义为其父亲节点。

由此,我们可以把一个状态到另一个状态的过程转换为树上一个节点到另一个节点的距离。

很显然我们只知道初状态和末状态。

我们并不知道树上的所有节点,因此,我们不能直接利用常规方法求\(LCA\)。

但是我们发现,我们可以求出一个节点的\(K\)祖先的状态。

由此,我们可以将一个节点移至于另一个节点深度相同的位置。

再二分答案,二分两个节点向上走的步数。

现在,问题成功转换为如何快速的求出一个节点的\(k\)祖先的状态。

我们可以发现设前两个数的差值为\(t_1\),后两个数的差值为\(t_2\),

左边的节点最多往右边跳\((t_2-1)/t_1\)次,然后变成右边跳。

这是一个辗转相除的过程,时间复杂度为\(O(log{n})\),问题也就解决了。

详见代码。

代码如下

#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; #define LL long long
#define reg register
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,x) for(reg int i=Head[x]; i; i=Nxt[i]) inline int Read() {
int res = 0, f = 1;
char c;
while (c = getchar(), c < 48 || c > 57)if (c == '-')f = 0;
do res = (res << 3) + (res << 1) + (c ^ 48);
while (c = getchar(), c >= 48 && c <= 57);
return f ? res : -res;
} template<class T>inline bool Min(T &a, T const&b) {
return a > b ? a = b, 1 : 0;
}
template<class T>inline bool Max(T &a, T const&b) {
return a < b ? a = b, 1 : 0;
} const int N = 20, M = 5e5 + 5; struct node {
int A[4];
bool operator!=(node _)const {
rep(i, 1, 3)if (A[i] != _.A[i])return true;
return false;
}
}; int tot; node Find(int *A, int step) {
node Ans;
rep(i, 1, 3)Ans.A[i] = A[i];
int step1 = A[2] - A[1], step2 = A[3] - A[2];
if (step1 == step2)return Ans;
if (step1 < step2) {
int t = min(step, (step2 - 1) / step1);
step -= t, tot += t;
Ans.A[1] += t * step1, Ans.A[2] += t * step1;
} else {
int t = min(step, (step1 - 1) / step2);
step -= t, tot += t;
Ans.A[2] -= t * step2, Ans.A[3] -= t * step2;
}
if (step)return Find(Ans.A, step);
else return Ans;
} int A[5], B[5];
signed main(void) {
rep(i, 1, 3)A[i] = Read();
rep(i, 1, 3)B[i] = Read();
sort(A + 1, A + 4), sort(B + 1, B + 4);
node a = Find(A, 1e9); int step1 = tot; tot = 0;
node b = Find(B, 1e9); int step2 = tot; tot = 0;
if (a != b)return !puts("NO");
if (step1 > step2) {
swap(step1, step2);
rep(i, 1, 3)swap(A[i], B[i]);
}
int Ans = step2 - step1;
node T = Find(B, Ans);
rep(i, 1, 3)B[i] = T.A[i];
int L = 0, R = step1;
while (L <= R) {
int mid = (L + R) >> 1;
if (Find(A, mid) != Find(B, mid)) L = mid + 1;
else R = mid - 1;
}
puts("YES");
printf("%d", Ans + 2 * L);
return 0;
}

[BZOJ2144][国家集训队2011]跳跳棋的更多相关文章

  1. AC日记——[国家集训队2011]旅游(宋方睿) cogs 1867

    [国家集训队2011]旅游(宋方睿) 思路: 树链剖分,边权转点权: 线段树维护三个东西,sum,max,min: 当一个区间变成相反数时,sum=-sum,max=-min,min=-max: 来, ...

  2. cogs 1901. [国家集训队2011]数颜色

    Cogs 1901. [国家集训队2011]数颜色 ★★★   输入文件:nt2011_color.in   输出文件:nt2011_color.out   简单对比时间限制:0.6 s   内存限制 ...

  3. BZOJ 2150 cogs 1861 [国家集训队2011]部落战争

    题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb把 ...

  4. bzoj2144 【国家集训队2011】跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  5. [BZOJ2144]国家集训队 跳跳棋

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...

  6. happiness[国家集训队2011(吴确)]

    [试题来源] 2011中国国家集训队命题答辩 [问题描述] 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科 ...

  7. COGS1882 [国家集训队2011]单选错位

    ★   输入文件:nt2011_exp.in   输出文件:nt2011_exp.out   简单对比时间限制:1 s   内存限制:512 MB [试题来源] 2011中国国家集训队命题答辩 [问题 ...

  8. 1893. [国家集训队2011]等差子序列(bitset)

    ★★   输入文件:nt2011_sequence.in   输出文件:nt2011_sequence.out   简单对比时间限制:0.3 s   内存限制:512 MB [试题来源] 2011中国 ...

  9. COGS.1901.[模板][国家集训队2011]数颜色(带修改莫队)

    题目链接 COGS BZOJ2120 洛谷P1903 /* Add和Subd函数中的vis不能直接设为=1或=0 比如 l=1,r=0 -> l=3,r=5 时,[1,5]的vis标记全都是1 ...

随机推荐

  1. css动画速度与三次贝赛尔曲线

      今天要说的是css的动画曲线.   首先要说的是语法: value: 1.linear:线性动画,也就是匀速,以相同的速度开始以相同的速度结束. 2.ease:默认的动画效果,特点是先快后慢,时间 ...

  2. ASP net 上传整个文件夹

    HTML部分 <%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="index.aspx. ...

  3. CF873F Forbidden Indices 后缀自动机+水题

    刷刷水~ Code: #include <cstdio> #include <cstring> #include <algorithm> #define N 200 ...

  4. sh_01_列表基本使用

    sh_01_列表基本使用 name_list = ["zhangsan", "lisi", "wangwu"] # 1. 取值和取索引 # ...

  5. pycharm安装与永久激活

    1.Pycham下载 https://www.jetbrains.com/pycharm/download/#section=windows 直接下载专业版 2.安装 这里就不必细说,直接next就O ...

  6. Java 里volatile关键字是什么意思啊?如何使用呢?

    一旦一个并发共享变量(类的成员变量.静态成员变量)被 volatile 关键字修饰就具备了可见性(即一个线程修改了一个变量的值对于另一个线程来说是立即可见的)和有序性(即禁止进行指令重排序),实质是在 ...

  7. 第六周总结&实验报告四

    这周是放国庆节的假,所有没有进行深入的学习,只是写了个实验的题目,也发现了自己在基础上还是要加强学习. 实验四 类的继承 一. 实验目的 (1) 掌握类的继承方法: (2) 变量的继承和覆盖,方法的继 ...

  8. 第九周学习总结&实验报告七

    实验报告: 实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. 实验 ...

  9. Oracle Rac 测试

      #还是使用之前的脚步来进行测试 #Author : Kconnie Pong Oracle@PONGDB:~> more load_balance.sh #!/bin/bash ..} do ...

  10. 浏览器端-W3School-HTML:HTML DOM Style 对象

    ylbtech-浏览器端-W3School-HTML:HTML DOM Style 对象 1.返回顶部 1. HTML DOM Style 对象 Style 对象 Style 对象代表一个单独的样式声 ...