吐槽

果然让人很疑惑,这道题,对于我这种数学渣渣来说太不友好了,哪里想得到结论,猜也猜不到。

思路一

纯数学,见过的飞快切掉,没见过的就...

结论就是:已知$a,b$为大于$ 1 $的互质的正整数,则使不定方程$ax+by=c$ 不存在非负整数解的最大整数
好像是叫什么赛瓦维斯特定理,但是除了这道题的题解之外,我没有在其它任何地方搜到,跟数学相关的痕迹一点都没有,太神奇了,难道这是一个只有$OIer$才研究的公式
证明一下吧。
首先,先证$ax+by=ab−a−b(a,b>1,(a,b)=1)$不存在非负整数解。
用反证法,假设存在$x>=0,y>=0$,使得 $ax+by=ab−a−b(a,b>1,(a,b)=1)$成立。

移项,得$a*(x+1)+b*(y+1)=a*b$

$a*(x+1)=b*(a-y-1)$
又因为$(a,b)=1$
则 $b\mid (x+1)$

同理可证:$a|(y+1)$
又因为$x>=0,y>=0$

所以$x>=b,y>=a$
则$a*(x+1)+b*(y+1)>=ab+ba>=2ab$

因为$a>1,b>1$

所以$ab>1$

所以$2ab>a$

与之前假设的$a*(x+1)+b*(y+1)=a*b$矛盾,所以假设不成立。

接下来,需要证明$ax+by=c$ $(a,b>1,(a,b)=1)$中,对于所有的$c>ab-a-b$,方程都存在非负整数解

设$c=ka+m-a-b(k>=b,a<=m<=a-1)$,即$ax+by=ka+m-a-b(k>=b,1<=m<=a-1)$

因为$(a,b)=1$,根据裴蜀定理,可知存在$x_0,y_0∈Z$,使$ax_0+by_0=1$

所以存在$x_0,y_0∈Z$,使$ax_0+by_0=m$

$y_0=(m-ax_0)/b$,对于$m%b$的不同,有$b-1$种$x_0$的取值,使得$y_0$是整数

我们令$-(b-1)<=x_0<=-1$,以此来先保证$y_0>=0$

由于$-ax_0>1,m>=1$,所以事实上$y_0>=1$

于是取$y=y_0-1$,则$y>=0$

则$x_0=(m-by_0)/a$,

$x=(ka+m-a-b-by)/a=k-1+(m-b-by)/a=k-1+(m-b-b(y0-1))/a=k-1+(m-by_0)/a=k-1+x_0$

又因为$-(b-1)<=x_0<=-1$,则$-(b-1)+k-1<=x<=-1+k-1$,$-b+k<=x<=k-2$

又因为$k>=b$,则$-b+k>=0$,则$x>=0$

得证。

思路二

暴力打表找规律,不过在没有OEIS的情况下我一般都找不出来的...

这就要看运气了

代码

说实话,这道题不贴代码都可以qwq

 #include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
using namespace std;
#define N 255
#define ll long long
#define INF 0x3f3f3f3f
ll a,b;
int main()
{
scanf("%lld %lld",&a,&b);
printf("%lld\n",a*b-a-b);
return ;
}

NOIp D1T1 小凯的疑惑的更多相关文章

  1. NOIP 2017 小凯的疑惑

    # NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...

  2. 洛谷 P3951 NOIP 2017 小凯的疑惑

    洛谷 P3951 NOIP 2017 小凯的疑惑 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付 ...

  3. NOIP2017 D1T1小凯的疑惑

    这应该是近年来最坑的第一题了. 我第一眼看到这题上来就打表,数据范围告诉我复杂度应该是log级的,然而一个小时后才发现是一个输出结论. 设较小数是a 较大数是b 写出几组可以发现一个规律就是一旦出现连 ...

  4. NOIP 2017 小凯的疑惑(同余类)

    题意 给出两个互质的数a,b问最大的不能被xa+yb(x,y>=0)表示的数.(a,b<=109) 题解 NOIPday1T1一道数论题,不知埋葬了多少人的梦想. 用同余类去解释. 我们依 ...

  5. NOIP2017 D1T1 小凯的疑惑

    洛谷P3951 看到题目,很容易想到这一题是求使ax+by=c(a,b,c∈N)无非负整数解的最大c 由裴蜀定理可知方程一定有整数解(a,b互素,gcd(a,b)=1|c) 解法一:暴力枚举 看到题目 ...

  6. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  7. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  8. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  9. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

随机推荐

  1. 解决Iview 中 input 无法监听 enter 事件

    比如 我们想要在某个组件的根元素监听一个原生事件 可以使用 .native 修饰 v-on 例子: 这样子写 enter事件将无效 但是使用 .native 修饰 就可以监听到 enter事件啦.

  2. Documents.Open返回值为null

    上个月出现的一个问题,将解决方法记录一下~ [问题]无法通过SAP系统外部OS命令(SM69)执行OS服务器上Powershell文件对Office文档的相关命令操作(打开文档等命令). [现象]执行 ...

  3. [深度学习] centos7上搭建基于Anaconda3的caffe+pycaffe环境(python3.6)

    本文记录从零开始在CentOS7.x系统上搭建Caffe深度学习平台,并配置pycaffe环境.(由于在虚拟机上搭建,所以为CPU_ONLY模式) 1.选择CentOS7 mini版镜像安装虚拟机 镜 ...

  4. [深度学习] R-CNN系论文略读

    总结: 一.R-CNN 摘要: 在对象检测方面,其性能在前几年就达到了一个比较稳定的状态.性能最好的方法是一种复杂的整体系统,它将多个图片的低级特征通过上下文组合起来. 本文提出了一种简单.可扩展的算 ...

  5. Nowcoder 北师校赛 B 外挂使用拒绝 ( k次前缀和、矩阵快速幂打表找规律、组合数 )

    题目链接 题意 : 中文题.点链接 分析 : 有道题是问你不断求前缀和后的结果 Click here 这道题问的是逆过程 分析方法雷同.可参考 Click here ----------------- ...

  6. 计算几何 点对处理 #345 (Div. 2) C. Watchmen

    题目:给你n(<=2*1e5)个点,求其中有多少个点对之间的连线向量平行坐标轴: #include <iostream> #include <cstdio> #inclu ...

  7. codevs 1405 牛的旅行x

    牛的旅行 [问题描述] 农民John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧场不连通.现在,John想在农场里添加一条路径 ...

  8. windows下kafka配置入门 示例

    实验平台与软件: 操作系统:windows7 32  位 java 开发包: jdk1.8.0_144 集群: zookeeper-3.3.6 消息队列: kafka_2.11-0.11.0.1 安装 ...

  9. java 获取文本一行一行读

    直接上代码: 如果出现乱码:请改一下编码:我这里使用utf-8是会乱码的,改GBK就好了 // 读取文件内容 public static String readFile(String path) {/ ...

  10. TCP定时器 之 保活定时器

    在用户进程启用了保活定时器的情况下,如果连接超过空闲时间没有数据交互,则保活定时器超时,向对端发送保活探测包,若(1)收到回复则说明对端工作正常,重置定时器等下下次达到空闲时间:(2) 收到其他回复, ...