摘要:TensorFlow 模型训练完成后,通常会通过frozen过程保存一个最终的pb模型。

本文分享自华为云社区《TensorFlow pb模型修改和优化》,作者:luchangli。

TensorFlow 模型训练完成后,通常会通过frozen过程保存一个最终的pb模型。保存的pb模型是以GraphDef数据结构保存的,可以序列化保存为二进制pb模型或者文本pbtxt模型。GraphDef本质上是一个DAG有向无环图,里面主要是存放了一个算子node list,每个算子具有名称,attr等内容,以及通过input包含了node之间的连接关系。

整个GraphDef的输入节点是以Placeholder节点来标识的,模型参数权重通常是以Const节点来保存的。不同于onnx,GraphDef没有对输出进行标识,好处是可以通过node_name:idx来引用获取任意一个节点的输出,缺点是一般需要通过netron手动打开查看模型输出,或者通过代码分析没有输出节点的node作为模型输出节点。下面简单介绍下pb模型常用的一些处理方法。

pb模型保存

# write pb model
with tf.io.gfile.GFile(model_path, "wb") as f:
f.write(graph_def.SerializeToString())
# write pbtxt model
tf.io.write_graph(graph_def, os.path.dirname(model_path), os.path.basename(model_path))

创建node

from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import node_def_pb2
from tensorflow.python.framework import tensor_util
pld_node = node_def_pb2.NodeDef()
pld_node.name = name
pld_node.op = "Placeholder"
shape = tf.TensorShape([None, 3, 256, 256])
pld_node.attr["shape"].CopyFrom(attr_value_pb2.AttrValue(shape=shape.as_proto()))
dtype = tf.dtypes.as_dtype("float32")
pld_node.attr["dtype"].CopyFrom(attr_value_pb2.AttrValue(type=dtype.as_datatype_enum))
# other commonly used setting
node.input.extend(in_node_names)
node.attr["value"].CopyFrom(
attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto(
np_array, np_array.type, np_array.shape)))

构建模型和保存

import tensorflow as tf
import numpy as np
tf.compat.v1.disable_eager_execution()
tf.compat.v1.reset_default_graph()
m = 200
k = 256
n = 128
a_shape = [m, k]
b_shape = [k, n]
np.random.seed(0)
input_np = np.random.uniform(low=0.0, high=1.0, size=a_shape).astype("float32")
kernel_np = np.random.uniform(low=0.0, high=1.0, size=b_shape).astype("float32")
# 构建模型
pld1 = tf.compat.v1.placeholder(dtype="float32", shape=a_shape, name="input1")
kernel = tf.constant(kernel_np, dtype="float32")
feed_dict = {pld1: input_np}
result_tf = tf.raw_ops.MatMul(a=pld1, b=kernel, transpose_a=False, transpose_b=False)
with tf.compat.v1.Session() as sess:
results = sess.run(result_tf, feed_dict=feed_dict)
print("results:", results)
# 保存模型
dump_model_name = "matmul_graph.pb"
graph = tf.compat.v1.get_default_graph()
graph_def = graph.as_graph_def()
with tf.io.gfile.GFile(dump_model_name, "wb") as f:
f.write(graph_def.SerializeToString())

当然一般用其他方式而不是raw_ops构建模型。

pb模型读取

from google.protobuf import text_format
graph_def = tf.compat.v1.GraphDef()
# read pb model
with tf.io.gfile.GFile(model_path, "rb") as f:
graph_def.ParseFromString(f.read())
# read pbtxt model
with open(model_path, "r") as pf:
text_format.Parse(pf.read(), graph_def)

node信息打印

常用信息:

node.name
node.op
node.input
node.device
# please ref https://www.tensorflow.org/api_docs/python/tf/compat/v1/AttrValue
node.attr[attr_name].f # b, i, tensor, etc.
# graph_def中node遍历:
for node in graph_def.node:
##

对于node的input,一般用node_name:idx如node_name:0来表示输入来自上一个算子的第idx个输出。:0省略则是默认为第0个输出。 名称前面加^符号是控制边。这个input是一个string list,这里面的顺序也对应这个node的各个输入的顺序。

创建GraphDef和添加node

graph_def_n = tf.compat.v1.GraphDef()
for node in graph_def_o.node:
node_n = node_def_pb2.NodeDef()
node_n.CopyFrom(node)
graph_def_n.node.extend([node_n])
# you probably need copy other value like version, etc. from old graph
graph_def_n.version = graph_def_o.version
graph_def_n.library.CopyFrom(graph_def_o.library)
graph_def_n.versions.CopyFrom(graph_def_o.versions)

return graph_def_n

没有onnx模型往graph里面添加节点的topo排序要求

设置placeholder的shape

参考前面创建node部分,通过修改Placeholder的shape属性。

模型shape推导

需要导入模型到tf:tf.import_graph_def(graph_def, name='')。当然需要先设置正确的pld的shape。

然后获取node的输出tensor:graph.get_tensor_by_name(node_name + ":0")。

最后可以从tensor里面获取shape和dtype。

pb模型图优化

思路一般比较简单:

1,子图连接关系匹配,比如要匹配conv2d+bn+relu这个pattern连接关系。由于每个node只保存其输入的node连接关系,要进行DFS/BFS遍历图一般需要每个node的输入输出,这可以首先读取所有的node连接关系并根据input信息同时创建一个output信息map。

2,子图替换,先创建新的算子,再把旧的算子替换为新的算子。这个需要创建新的node或者直接修改原来的node。旧的不要的算子可以创建个新图拷贝时丢弃,新的node可以直接extend到graph_def。

3,如果替换为TF内置的算子,算子定义可以参考tensorflow raw_ops中的定义,但是有些属性(例如数据类型attr "T")没有列出来:https://www.tensorflow.org/api_docs/python/tf/raw_ops

当然也可以替换为自定义算子,这就需要用户开发和注册自定义算子:https://www.tensorflow.org/guide/create_op

如上所述,TensorFlow的pb模型修改优化可以直接使用python代码实现,极大简化开发过程。当然TensorFlow也可以注册grappler和post rewrite图优化pass在C++层面进行图优化,后者除了可以用于推理,也可以用于训练优化。

saved model与pb模型的相互转换

可以参考:tensorflow 模型导出总结 - 知乎

saved model保存的是一整个训练图,并且参数没有冻结。而只用于模型推理serving并不需要完整的训练图,并且参数不冻结无法进行转TensorRT等极致优化。当然也可以saved_model->frozen pb->saved model来同时利用两者的优点。

pb转onnx

使用tf2onnx库GitHub - onnx/tensorflow-onnx: Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

#!/bin/bash
graphdef=input_model.pb
inputs=Placeholder_1:0,Placeholder_2:0
outputs=output0:0,output1:0
output=${graphdef}.onnx
python -m tf2onnx.convert \
--graphdef ${graphdef} \
--output ${output} \
--inputs ${inputs} \
--outputs ${outputs}\
--opset 12

点击关注,第一时间了解华为云新鲜技术~

带你了解TensorFlow pb模型常用处理方法的更多相关文章

  1. 查看tensorflow pb模型文件的节点信息

    查看tensorflow pb模型文件的节点信息: import tensorflow as tf with tf.Session() as sess: with open('./quantized_ ...

  2. MxNet 模型转Tensorflow pb模型

    用mmdnn实现模型转换 参考链接:https://www.twblogs.net/a/5ca4cadbbd9eee5b1a0713af 安装mmdnn pip install mmdnn 准备好mx ...

  3. 查看tensorflow Pb模型所有层的名字

    代码如下: import tensorflow as tf def get_all_layernames(): """get all layers name"& ...

  4. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  5. tensorflow学习笔记——模型持久化的原理,将CKPT转为pb文件,使用pb模型预测

    由题目就可以看出,本节内容分为三部分,第一部分就是如何将训练好的模型持久化,并学习模型持久化的原理,第二部分就是如何将CKPT转化为pb文件,第三部分就是如何使用pb模型进行预测. 一,模型持久化 为 ...

  6. [Tensorflow]模型持久化的原理,将CKPT转为pb文件,使用pb模型预测

    文章目录 [Tensorflow]模型持久化的原理,将CKPT转为pb文件,使用pb模型预测 一.模型持久化 1.持久化代码实现 convert_variables_to_constants固化模型结 ...

  7. tensorflow c++ API加载.pb模型文件并预测图片

    tensorflow  python创建模型,训练模型,得到.pb模型文件后,用c++ api进行预测 #include <iostream> #include <map> # ...

  8. 将keras的h5模型转换为tensorflow的pb模型

    h5_to_pb.py from keras.models import load_model import tensorflow as tf import os import os.path as ...

  9. tensorflow机器学习模型的跨平台上线

    在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法 ...

  10. (四) tensorflow笔记:常用函数说明

    tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...

随机推荐

  1. 【数字图像处理】Matlab实现-图像增强-彩色图像增强(彩虹编码,热金属编码)

    伪彩色处理 伪彩色增强:把一幅黑白域图像的不同灰度级映射为一幅彩色图像的技术手段. 伪彩色增强有很多种方法,而下面的增强方法则是使用的空间域灰度级-彩色变换法. 空间域灰度级-彩色变换法:可以将灰度图 ...

  2. Docker学习资料集(从入门到实践)

    前言 昨天分享了一篇介绍Docker可视化管理工具的文章,然后在公众号后台收到了挺多同学的私信问:学习Docker有好的资料值得推荐的吗?想要学习Docker但是无从下手.其实之前我有断断续续的分享过 ...

  3. HarmonyOS 高级特性

    引言 本章将探讨 HarmonyOS 的高级特性,包括分布式能力.安全机制和性能优化.这些特性可以帮助你构建更强大.更安全.更高效的应用. 目录 HarmonyOS 的分布式能力 HarmonyOS ...

  4. 【Flutter】一文读懂混入类Mixin

    [Flutter]一文读懂混入类Mixin 基本介绍 Mixin是一种有利于代码复用,又避免了多继承的解决方案. Mixin 是面向对象程序设计语言中的类,提供了方法的实现,其他类可以访问 Mixin ...

  5. Log4j入门使用

    前言 本篇文章主要在于,初步了解log4j,以及对它的简单使用 欢迎点赞 收藏 留言评论 私信必回哟 博主将持续更新学习记录收获,友友们有任何问题可以在评论区留言 @ 目录 一,log4j简介 二,配 ...

  6. 解密Spring Cloud微服务调用:如何轻松获取请求目标方的IP和端口

    公众号「架构成长指南」,专注于生产实践.云原生.分布式系统.大数据技术分享. 目的 Spring Cloud 线上微服务实例都是2个起步,如果出问题后,在没有ELK等日志分析平台,如何确定调用到了目标 ...

  7. day2-JS基础&流程控制

    typora-root-url: img 自增自减运算符 1.基本使用 内置提供 ++.--运算符 是用于将变量本身进行加1或者减1操作 // 1.基本使用 var i = 10; i++;//等价于 ...

  8. 【Javaweb】servlet二

    servlet程序常见错误 1.url-pattern路径没有以 / 打头 2.servlet-name配置的值不存在 3.servlet-class标签的全类名配置错误 servlet-url地址如 ...

  9. .NET企业应用安全开发动向-概览

    太长不读版:试图从安全的全局视角触发,探讨安全的重要性,讨论如何识别安全问题的方法,介绍.NET提供的与安全相关的基础设施,以及一些与时俱进的安全问题,为读者建立体系化的安全思考框架. 引言 关于&q ...

  10. [GDOIpj221B] 数列游戏

    第二题 数列游戏 提交文件: sequence.cpp 输入文件: sequence.in 输出文件: sequence.out 时间空间限制: 1 秒, 256 MB 有一个长度为 \(n\) 的序 ...