Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning论文阅读
Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning
2023 ICCV
*Siming Yan, Zhenpei Yang, Haoxiang Li, Chen Song, Li Guan, Hao Kang, Gang Hua, Qixing Huang*; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 14530-14542
- paper: [2201.00785] Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning (arxiv.org)
- code: [SimingYan/IAE: ICCV 2023] "Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning" (github.com)
Abstract
总结 :本文专注于autoencoder框架下的点云表示模型的性能优化,提出了sample-variant issue ,即不同采样(采样是因为网络处理体量限制,需要先对数据集中的数据进行降采样)引入的噪声不同,普通的autoencoder点云表示学习方法,例如Point-MAE拟合输入和重建点云保持完全一致,导致采样中的噪声一定程度上也影响到的了encoder输出的latent code,降低了对同一目标的不同点云的语义表示一致性,换句话说: limiting the model's ability to extract valuable information about the true 3D geometry。作者基于这一点提出了对于decoder的优化,decoder原来是重建点云数据,作者换为重建输入点云的隐式表示 (SDF、UDF、occupancy grid),并且原来的Loss函数(Chamfer Distance Loss,Earth Mover`s Distance)替换为:将重建的隐式表示,和输入点云计算得到的隐式表示之间的L1 distance(for SDF,UDF),或者cross entropy(for occupancy grid)。Loss替换还有一个好处在于大大降低了计算复杂度,使得输入点云的点数能够大大增多,论文中表明点数能从1k左右 -> 40k,在tesla V100的GPU加持下。
Sample Variation Issue

从图中不同的采样在不同位置的点云密度不同,密度大的自然网络容易学习,密度小的网络学习较为困难,但确实原来直接重建点云的方法,使得latent code不得不带有不同sample distinctive的特征描述,本文就意在解决这一问题,促使网络学习到更加generalize的特征)(for one 3D object)。
实验中显示了IAE思想的有效性,在分类任务中观察同类样本和非同类样本的特征描述相互之间的距离,可以看到IAE同类样本的聚类半径远小于显示重建点云:

Pipeline

这里主要说的pretrain阶段的decoder的输出,本文主要改进的也是他,这里的 \((g \circ f)(x | \mathcal{P})\) 表示这个autoencoder-decoder架构在 \(\mathcal{P}\) 采样输入样本下的重建出来的隐式表示, \(\lambda_{gt}\) 表示使用ground truth(数据集中的数据)计算出来的隐式表示,例如SDF、UDF、occupancy grid三种:


Experiment
看论文就行了,全SOTA,确实有效,并且替换其他encoder,与其他基于其encoder的方法作比较也是SOTA。
在隐式表示是occupancy grid用的decoder:

Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning论文阅读的更多相关文章
- Chinese word segment based on character representation learning 论文笔记
论文名和编号 摘要/引言 相关背景和工作 论文方法/模型 实验(数据集)及 分析(一些具体数据) 未来工作/不足 是否有源码 问题 原因 解决思路 优势 基于表示学习的中文分词 编号:1001-908 ...
- 论文解读(GRACE)《Deep Graph Contrastive Representation Learning》
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Fe ...
- 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
- 论文解读(MERIT)《Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning》
论文信息 论文标题:Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning ...
- 论文解读(SUBG-CON)《Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning》
论文信息 论文标题:Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning论文作者:Yizhu Ji ...
- 论文解读(USIB)《Towards Explanation for Unsupervised Graph-Level Representation Learning》
论文信息 论文标题:Towards Explanation for Unsupervised Graph-Level Representation Learning论文作者:Qinghua Zheng ...
- 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...
- 翻译 Improved Word Representation Learning with Sememes
翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with ...
- Self-Supervised Representation Learning
Self-Supervised Representation Learning 2019-11-11 21:12:14 This blog is copied from: https://lilia ...
- (转)Predictive learning vs. representation learning 预测学习 与 表示学习
Predictive learning vs. representation learning 预测学习 与 表示学习 When you take a machine learning class, ...
随机推荐
- I2S 总线学习:1-有关概念
背景 I2S总线 是一种常见的总线,也是需要掌握的. 概念 I2S(Inter-IC Sound)总线, 又称 集成电路内置音频总线,是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准, ...
- 模拟用户登录-cookes
import requests url = 'https://www.xread8.com/user/login.json' headers = { 'User-Agent': 'Mozilla/5. ...
- 【资料分享】全志科技T507工业核心板硬件说明书(上)
目 录 前言 1硬件资源 1.1CPU 1.2ROM 1.3RAM 1.4时钟系统 1.5电源 1.6LED 1.7外设资源 2引脚说明 2.1引脚排列 2.2引脚定义 2.3内部引脚使用说明 ...
- 有手就会的 Java 处理压缩文件
@ 目录 前言 背景 第一步:编写代码 1.1 请求层 1.2 业务处理层 1.3 新增配置 第二步:解压缩处理 2.1 引入依赖 2.2 解压缩工具类 总结 前言 请各大网友尊重本人原创知识分享,谨 ...
- wireshark常用过滤指令
前言 wireshark是一款高效且免费的网络封包分析软件,现就自己使用过的过滤表达式进行记录,随时更新. 正文 与.或.非指令 与:and && 示例:tcp and ip.src ...
- Spring中文官方文档
Spring 中文文档 https://springdoc.cn/ Spring Boot 中文文档 https://www.docs4dev.com/docs/zh/spring-boot/1.5. ...
- 新版SpringBoot-Spring-Mybatis 数据库相关配置
application.properties server.port=8081 # ========================数据库相关配置===================== sprin ...
- nginx面试题及答案
什么是nginx? Nginx是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器 Nginx是一款轻量级的Web服务器/反向代理服务器及电子邮件(IMAP/POP3)代 ...
- 「悬浮捷径SoftCircle」安卓平台的hao123,一键打开万物
罗老师的onestep一步发布之前, 终端的打开形式还拘泥于桌面和负一屏 这种方式够简洁,但缺点明显: 1.入口单一性:只能在app首页和各种扫一扫之间选择和切换 2.操作复杂:入口切换需要频繁的进入 ...
- 持久化技术Mybatis知识精讲【形成知识体系篇】
环境要求 JDK1.8及以上版本 MySQL数据库 Apache Maven 3.6.1构建工具 IDEA/VSCode/Eclipse开发工具任选其一 思维导图:Xmind ZEN 技术要求 熟悉J ...