Kafka表集成引擎

此引擎与Apache Kafka结合使用。

Kafka 特性:

  • 发布或者订阅数据流。
  • 容错存储机制。
  • 处理流数据。

老版Kafka集成表引擎参数格式:

Kafka(kafka_broker_list, kafka_topic_list, kafka_group_name, kafka_format
[, kafka_row_delimiter, kafka_schema, kafka_num_consumers])

新版Kafka集成表引擎参数格式:

Kafka SETTINGS
kafka_broker_list = 'localhost:9092',
kafka_topic_list = 'topic1,topic2',
kafka_group_name = 'group1',
kafka_format = 'JSONEachRow',
kafka_row_delimiter = '\n',
kafka_schema = '',
kafka_num_consumers = 2

必要参数:

  • kafka_broker_list – 以逗号分隔的 brokers 列表 (localhost:9092)。
  • kafka_topic_list – topic 列表 (my_topic)。
  • kafka_group_name – Kafka 消费组名称 (group1)。如果不希望消息在集群中重复,请在每个分片中使用相同的组名。
  • kafka_format – 消息体格式。使用与 SQL 部分的 FORMAT 函数相同表示方法,例如 JSONEachRow

可选参数:

  • kafka_row_delimiter - 每个消息体(记录)之间的分隔符。
  • kafka_schema – 如果解析格式需要一个 schema 时,此参数必填。
  • kafka_num_consumers – 单个表的消费者数量。默认值是:1,如果一个消费者的吞吐量不足,则指定更多的消费者。消费者的总数不应该超过 topic 中分区的数量,因为每个分区只能分配一个消费者。

ClickHouse可以接受和返回各种格式的数据。受支持的输入格式可用于提交给INSERT语句、从文件表(File,URL,HDFS或者外部目录)执行SELECT语句,受支持的输出格式可用于格式化SELECT语句的返回结果,或者通过INSERT写入到文件表。

以下kafka_format是支持的格式,ClickHouse可以接受和返回各种格式的数据。受支持的输入格式可用于提交给INSERT语句、从文件表(File,URL,HDFS或者外部目录)执行SELECT语句,受支持的输出格式可用于格式化SELECT语句的返回结果,或者通过INSERT写入到文件表。

格式 输入 输出
[TabSeparated]
[TabSeparatedRaw]
[TabSeparatedWithNames]
[TabSeparatedWithNamesAndTypes]
[Template]
[TemplateIgnoreSpaces]
[CSV]
[CSVWithNames]
[CustomSeparated]
[Values]
[Vertical]
[JSON]
[JSONAsString]
[JSONStrings]
[JSONCompact]
[JSONCompactStrings]
[JSONEachRow]
[JSONEachRowWithProgress]
[JSONStringsEachRow]
[JSONStringsEachRowWithProgress]
[JSONCompactEachRow]
[JSONCompactEachRowWithNamesAndTypes]
[JSONCompactStringsEachRow]
[JSONCompactStringsEachRowWithNamesAndTypes]
[TSKV]
[Pretty]
[PrettyCompact]
[PrettyCompactMonoBlock]
[PrettyNoEscapes]
[PrettySpace]
[Protobuf]
[ProtobufSingle]
[Avro]
[AvroConfluent]
[Parquet]
[Arrow]
[ArrowStream]
[ORC]
[RowBinary]
[RowBinaryWithNamesAndTypes]
[Native]
[Null]
[XML]
[CapnProto]
[LineAsString]
[Regexp]
[RawBLOB]

示例:

  CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow'); SELECT * FROM queue LIMIT 5; CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka SETTINGS kafka_broker_list = 'localhost:9092',
kafka_topic_list = 'topic',
kafka_group_name = 'group1',
kafka_format = 'JSONEachRow',
kafka_num_consumers = 4; CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1')
SETTINGS kafka_format = 'JSONEachRow',
kafka_num_consumers = 4;

消费的消息会被自动追踪,因此每个消息在不同的消费组里只会记录一次。如果希望获得两次数据,则使用另一个组名创建副本。

消费组可以灵活配置并且在集群之间同步。例如,如果群集中有10个主题和5个表副本,则每个副本将获得2个主题。 如果副本数量发生变化,主题将自动在副本中重新分配。

SELECT 查询对于读取消息并不是很有用(调试除外),因为每条消息只能被读取一次。使用物化视图创建实时线程更实用。您可以这样做:

  1. 使用引擎创建一个 Kafka 消费者并作为一条数据流。
  2. 创建一个结构表。
  3. 创建物化视图,改视图会在后台转换引擎中的数据并将其放入之前创建的表中。

MATERIALIZED VIEW 添加至引擎,它将会在后台收集数据。可以持续不断地从 Kafka 收集数据并通过 SELECT 将数据转换为所需要的格式。

示例:

  CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow'); CREATE TABLE daily (
day Date,
level String,
total UInt64
) ENGINE = SummingMergeTree(day, (day, level), 8192); CREATE MATERIALIZED VIEW consumer TO daily
AS SELECT toDate(toDateTime(timestamp)) AS day, level, count() as total
FROM queue GROUP BY day, level; SELECT level, sum(total) FROM daily GROUP BY level;

为了提高性能,接受的消息被分组为max_insert_block_size大小的块。如果未在stream_flush_interval_ms毫秒内形成块,则不关心块的完整性,都会将数据刷新到表中。

停止接收主题数据或更改转换逻辑,请 detach 物化视图:

  DETACH TABLE consumer;
ATTACH TABLE consumer;

如果使用 ALTER 更改目标表,为了避免目标表与视图中的数据之间存在差异,推荐停止物化视图。

配置

GraphiteMergeTree 类似,Kafka 引擎支持使用ClickHouse配置文件进行扩展配置。可以使用两个配置键:全局 (kafka) 和 主题级别 (kafka_*)。首先应用全局配置,然后应用主题级配置(如果存在)。

  <!-- Global configuration options for all tables of Kafka engine type -->
<kafka>
<debug>cgrp</debug>
<auto_offset_reset>smallest</auto_offset_reset>
</kafka> <!-- Configuration specific for topic "logs" -->
<kafka_logs>
<retry_backoff_ms>250</retry_backoff_ms>
<fetch_min_bytes>100000</fetch_min_bytes>
</kafka_logs>

ClickHouse配置中使用下划线 (_) ,并不是使用点 (.)。例如,check.crcs=true 将是 <check_crcs>true</check_crcs>

Kerberos 支持

对于使用了kerberos的kafka, 将security_protocol 设置为sasl_plaintext就够了,如果kerberos的ticket是由操作系统获取和缓存的。

clickhouse也支持自己使用keyfile的方式来维护kerbros的凭证。配置sasl_kerberos_service_name、sasl_kerberos_keytab、sasl_kerberos_principal三个子元素就可以。

示例:

  <!-- Kerberos-aware Kafka -->
<kafka>
<security_protocol>SASL_PLAINTEXT</security_protocol>
<sasl_kerberos_keytab>/home/kafkauser/kafkauser.keytab</sasl_kerberos_keytab>
<sasl_kerberos_principal>kafkauser/kafkahost@EXAMPLE.COM</sasl_kerberos_principal>
</kafka>

虚拟列

  • _topic – Kafka 主题。
  • _key – 信息的键。
  • _offset – 消息的偏移量。
  • _timestamp – 消息的时间戳。
  • _timestamp_ms – 消息的时间戳(毫秒)。
  • _partition – Kafka 主题的分区。

资料分享

ClickHouse经典中文文档分享

参考文章

ClickHouse(21)ClickHouse集成Kafka表引擎详细解析的更多相关文章

  1. ClickHouse(10)ClickHouse合并树MergeTree家族表引擎之ReplacingMergeTree详细解析

    目录 建表语法 数据处理策略 资料分享 参考文章 MergeTree拥有主键,但是它的主键却没有唯一键的约束.这意味着即便多行数据的主键相同,它们还是能够被正常写入.在某些使用场合,用户并不希望数据表 ...

  2. ClickHouse(11)ClickHouse合并树MergeTree家族表引擎之SummingMergeTree详细解析

    目录 建表语法 数据处理 汇总的通用规则 AggregateFunction 列中的汇总 嵌套结构数据的处理 资料分享 参考文章 SummingMergeTree引擎继承自MergeTree.区别在于 ...

  3. ClickHouse(12)ClickHouse合并树MergeTree家族表引擎之AggregatingMergeTree详细解析

    目录 建表语法 查询和插入数据 数据处理逻辑 ClickHouse相关资料分享 AggregatingMergeTree引擎继承自 MergeTree,并改变了数据片段的合并逻辑.ClickHouse ...

  4. ClickHouse(13)ClickHouse合并树MergeTree家族表引擎之CollapsingMergeTree详细解析

    目录 建表 折叠 数据 算法 资料分享 参考文章 该引擎继承于MergeTree,并在数据块合并算法中添加了折叠行的逻辑.CollapsingMergeTree会异步的删除(折叠)这些除了特定列Sig ...

  5. UniqueMergeTree:支持实时更新删除的 ClickHouse 表引擎

    UniqueMergeTree 开发的业务背景 首先,我们看一下哪些场景需要用到实时更新. 我们总结了三类场景: 第一类是业务需要对它的交易类数据进行实时分析,需要把数据流同步到 ClickHouse ...

  6. Clickhouse表引擎之MergeTree

    1.概述 在Clickhouse中有多种表引擎,不同的表引擎拥有不同的功能,它直接决定了数据如何读写.是否能够并发读写.是否支持索引.数据是否可备份等等.本篇博客笔者将为大家介绍Clickhouse中 ...

  7. ClickHouse入门:表引擎-HDFS

    前言插件及服务器版本服务器:ubuntu 16.04Hadoop:2.6ClickHouse:20.9.3.45 文章目录 简介 引擎配置 HDFS表引擎的两种使用形式 引用 简介 ClickHous ...

  8. Clickhouse表引擎探究-ReplacingMergeTree

    作者:耿宏宇 1 表引擎简述 1.1 官方描述 MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中.数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合 ...

  9. ClickHouse(07)ClickHouse数据库引擎解析

    目录 Atomic 建表语句 特性 Table UUID RENAME TABLES DROP/DETACH TABLES EXCHANGE TABLES ReplicatedMergeTree in ...

  10. [MySQL数据库之表的详细操作:存储引擎、表介绍、表字段之数据类型]

    [MySQL数据库之表的详细操作:存储引擎.表介绍.表字段之数据类型] 表的详细操作 存储引擎 mysql中建立的库======>文件夹 库中建立的表======>文件 用来存储数据的文件 ...

随机推荐

  1. xftp 7必须更新最新版本怎么解决

    下载可以查看16进制的软件: Sublime Text 运行XFTP7 双击打开是:这样的 解决方案 用Sublime Text进行打开nslicense.dll, 打开之后查找"0f88 ...

  2. C中code关键字

    单片机C语言code是什么作用? code的作用是告诉单片机,我定义的数据要存储在ROM(程序存储区)里面,写入后就不能再更改,其实是相当与汇编里面的寻址MOVC(好像是),因为C语言中没办法详细描述 ...

  3. 在Docker下一键安装部署免费开源的问答社区!

    在Docker下一键安装部署免费开源的问答社区!   1.准备一台VPS主机,没有的话,[搞一台] 2.一键安装部署Docker wget https://raw.githubusercontent. ...

  4. 在 Linux 环境(Ubuntu)下安装 Slurm 和 OpenMPI

    安装 Slurm 从软件源安装 slurm-wlm(每个节点都需要装的执行工具).slurm-client(客户机装的提交命令的工具).munge(节点间通信插件) sudo apt install ...

  5. 文心一言 VS 讯飞星火 VS chatgpt (111)-- 算法导论10.2 2题

    二.用go语言,用一个单链表 L实现一个栈.要求操作 PUSH和 POP 的运行时间仍为 O(1). 文心一言: 在 Go 语言中,我们可以用结构体来实现一个单链表,然后再用栈的相关操作. 以下是一个 ...

  6. RLChina2022-实践课三:强化学习算法

    MDP算法 MDP被定义为一个元组(S,A,P,r,R) S:所有状态集合 A:在环境力里面智能体所作动作的集合 P:状态转移函数P(s'|s,a),智能体在当前s下,执行a之后,转移到是s'的概率 ...

  7. 再见,Spring!你好,Solon!

    Solon 是什么框架? Java 生态级应用开发框架.从零开始构建,有自己的标准规范与开放生态(历时五年,具备全球第二级别的生态规模).与其他框架相比,解决了两个重要的痛点:启动慢,费内存. 解决痛 ...

  8. 互联网那些技术 | 扒一扒互联网Markdown的那些事儿

    最近感觉到 Markdown 似乎已成为各大社区的编辑器标配所支持的格式,侧面看来其设计之初的目标 " to be used as a format for writing for the ...

  9. 一款实用的.NET Core加密解密工具类库

    前言 在我们日常开发工作中,为了数据安全问题对数据加密.解密是必不可少的.加密方式有很多种如常见的AES,RSA,MD5,SAH1,SAH256,DES等,这时候假如我们有一个封装的对应加密解密工具类 ...

  10. Postgresql——jsonb类型

    Postgresql Json 最近有个功能,需要用到 NoSQL 数据库.但是又不想因为这个小小的功能给系统增加一个 MongoDB 数据库,于是就想到了 Postgresql 支持 JSON 类型 ...