ClickHouse(21)ClickHouse集成Kafka表引擎详细解析
Kafka表集成引擎
此引擎与Apache Kafka结合使用。
Kafka 特性:
- 发布或者订阅数据流。
- 容错存储机制。
- 处理流数据。
老版Kafka集成表引擎参数格式:
Kafka(kafka_broker_list, kafka_topic_list, kafka_group_name, kafka_format
[, kafka_row_delimiter, kafka_schema, kafka_num_consumers])
新版Kafka集成表引擎参数格式:
Kafka SETTINGS
kafka_broker_list = 'localhost:9092',
kafka_topic_list = 'topic1,topic2',
kafka_group_name = 'group1',
kafka_format = 'JSONEachRow',
kafka_row_delimiter = '\n',
kafka_schema = '',
kafka_num_consumers = 2
必要参数:
kafka_broker_list– 以逗号分隔的 brokers 列表 (localhost:9092)。kafka_topic_list– topic 列表 (my_topic)。kafka_group_name– Kafka 消费组名称 (group1)。如果不希望消息在集群中重复,请在每个分片中使用相同的组名。kafka_format– 消息体格式。使用与 SQL 部分的FORMAT函数相同表示方法,例如JSONEachRow。
可选参数:
kafka_row_delimiter- 每个消息体(记录)之间的分隔符。kafka_schema– 如果解析格式需要一个 schema 时,此参数必填。kafka_num_consumers– 单个表的消费者数量。默认值是:1,如果一个消费者的吞吐量不足,则指定更多的消费者。消费者的总数不应该超过 topic 中分区的数量,因为每个分区只能分配一个消费者。
ClickHouse可以接受和返回各种格式的数据。受支持的输入格式可用于提交给INSERT语句、从文件表(File,URL,HDFS或者外部目录)执行SELECT语句,受支持的输出格式可用于格式化SELECT语句的返回结果,或者通过INSERT写入到文件表。
以下kafka_format是支持的格式,ClickHouse可以接受和返回各种格式的数据。受支持的输入格式可用于提交给INSERT语句、从文件表(File,URL,HDFS或者外部目录)执行SELECT语句,受支持的输出格式可用于格式化SELECT语句的返回结果,或者通过INSERT写入到文件表。
| 格式 | 输入 | 输出 |
|---|---|---|
| [TabSeparated] | ||
| [TabSeparatedRaw] | ||
| [TabSeparatedWithNames] | ||
| [TabSeparatedWithNamesAndTypes] | ||
| [Template] | ||
| [TemplateIgnoreSpaces] | ✗ | |
| [CSV] | ||
| [CSVWithNames] | ||
| [CustomSeparated] | ||
| [Values] | ||
| [Vertical] | ✗ | |
| [JSON] | ✗ | |
| [JSONAsString] | ✗ | |
| [JSONStrings] | ✗ | |
| [JSONCompact] | ✗ | |
| [JSONCompactStrings] | ✗ | |
| [JSONEachRow] | ||
| [JSONEachRowWithProgress] | ✗ | |
| [JSONStringsEachRow] | ||
| [JSONStringsEachRowWithProgress] | ✗ | |
| [JSONCompactEachRow] | ||
| [JSONCompactEachRowWithNamesAndTypes] | ||
| [JSONCompactStringsEachRow] | ||
| [JSONCompactStringsEachRowWithNamesAndTypes] | ||
| [TSKV] | ||
| [Pretty] | ✗ | |
| [PrettyCompact] | ✗ | |
| [PrettyCompactMonoBlock] | ✗ | |
| [PrettyNoEscapes] | ✗ | |
| [PrettySpace] | ✗ | |
| [Protobuf] | ||
| [ProtobufSingle] | ||
| [Avro] | ||
| [AvroConfluent] | ✗ | |
| [Parquet] | ||
| [Arrow] | ||
| [ArrowStream] | ||
| [ORC] | ||
| [RowBinary] | ||
| [RowBinaryWithNamesAndTypes] | ||
| [Native] | ||
| [Null] | ✗ | |
| [XML] | ✗ | |
| [CapnProto] | ✗ | |
| [LineAsString] | ✗ | |
| [Regexp] | ✗ | |
| [RawBLOB] |
示例:
CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');
SELECT * FROM queue LIMIT 5;
CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka SETTINGS kafka_broker_list = 'localhost:9092',
kafka_topic_list = 'topic',
kafka_group_name = 'group1',
kafka_format = 'JSONEachRow',
kafka_num_consumers = 4;
CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1')
SETTINGS kafka_format = 'JSONEachRow',
kafka_num_consumers = 4;
消费的消息会被自动追踪,因此每个消息在不同的消费组里只会记录一次。如果希望获得两次数据,则使用另一个组名创建副本。
消费组可以灵活配置并且在集群之间同步。例如,如果群集中有10个主题和5个表副本,则每个副本将获得2个主题。 如果副本数量发生变化,主题将自动在副本中重新分配。
SELECT 查询对于读取消息并不是很有用(调试除外),因为每条消息只能被读取一次。使用物化视图创建实时线程更实用。您可以这样做:
- 使用引擎创建一个 Kafka 消费者并作为一条数据流。
- 创建一个结构表。
- 创建物化视图,改视图会在后台转换引擎中的数据并将其放入之前创建的表中。
当 MATERIALIZED VIEW 添加至引擎,它将会在后台收集数据。可以持续不断地从 Kafka 收集数据并通过 SELECT 将数据转换为所需要的格式。
示例:
CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');
CREATE TABLE daily (
day Date,
level String,
total UInt64
) ENGINE = SummingMergeTree(day, (day, level), 8192);
CREATE MATERIALIZED VIEW consumer TO daily
AS SELECT toDate(toDateTime(timestamp)) AS day, level, count() as total
FROM queue GROUP BY day, level;
SELECT level, sum(total) FROM daily GROUP BY level;
为了提高性能,接受的消息被分组为max_insert_block_size大小的块。如果未在stream_flush_interval_ms毫秒内形成块,则不关心块的完整性,都会将数据刷新到表中。
停止接收主题数据或更改转换逻辑,请 detach 物化视图:
DETACH TABLE consumer;
ATTACH TABLE consumer;
如果使用 ALTER 更改目标表,为了避免目标表与视图中的数据之间存在差异,推荐停止物化视图。
配置
与 GraphiteMergeTree 类似,Kafka 引擎支持使用ClickHouse配置文件进行扩展配置。可以使用两个配置键:全局 (kafka) 和 主题级别 (kafka_*)。首先应用全局配置,然后应用主题级配置(如果存在)。
<!-- Global configuration options for all tables of Kafka engine type -->
<kafka>
<debug>cgrp</debug>
<auto_offset_reset>smallest</auto_offset_reset>
</kafka>
<!-- Configuration specific for topic "logs" -->
<kafka_logs>
<retry_backoff_ms>250</retry_backoff_ms>
<fetch_min_bytes>100000</fetch_min_bytes>
</kafka_logs>
在ClickHouse配置中使用下划线 (_) ,并不是使用点 (.)。例如,check.crcs=true 将是 <check_crcs>true</check_crcs>。
Kerberos 支持
对于使用了kerberos的kafka, 将security_protocol 设置为sasl_plaintext就够了,如果kerberos的ticket是由操作系统获取和缓存的。
clickhouse也支持自己使用keyfile的方式来维护kerbros的凭证。配置sasl_kerberos_service_name、sasl_kerberos_keytab、sasl_kerberos_principal三个子元素就可以。
示例:
<!-- Kerberos-aware Kafka -->
<kafka>
<security_protocol>SASL_PLAINTEXT</security_protocol>
<sasl_kerberos_keytab>/home/kafkauser/kafkauser.keytab</sasl_kerberos_keytab>
<sasl_kerberos_principal>kafkauser/kafkahost@EXAMPLE.COM</sasl_kerberos_principal>
</kafka>
虚拟列
_topic– Kafka 主题。_key– 信息的键。_offset– 消息的偏移量。_timestamp– 消息的时间戳。_timestamp_ms– 消息的时间戳(毫秒)。_partition– Kafka 主题的分区。
资料分享
参考文章
- ClickHouse(01)什么是ClickHouse,ClickHouse适用于什么场景
- ClickHouse(02)ClickHouse架构设计介绍概述与ClickHouse数据分片设计
- ClickHouse(03)ClickHouse怎么安装和部署
- ClickHouse(04)如何搭建ClickHouse集群
- ClickHouse(05)ClickHouse数据类型详解
- ClickHouse(06)ClickHouse建表语句DDL详细解析
- ClickHouse(07)ClickHouse数据库引擎解析
- ClickHouse(08)ClickHouse表引擎概况
- ClickHouse(09)ClickHouse合并树MergeTree家族表引擎之MergeTree详细解析
- ClickHouse(10)ClickHouse合并树MergeTree家族表引擎之ReplacingMergeTree详细解析
- ClickHouse(11)ClickHouse合并树MergeTree家族表引擎之SummingMergeTree详细解析
- ClickHouse(12)ClickHouse合并树MergeTree家族表引擎之AggregatingMergeTree详细解析
- ClickHouse(13)ClickHouse合并树MergeTree家族表引擎之CollapsingMergeTree详细解析
- ClickHouse(14)ClickHouse合并树MergeTree家族表引擎之VersionedCollapsingMergeTree详细解析
- ClickHouse(15)ClickHouse合并树MergeTree家族表引擎之GraphiteMergeTree详细解析
- ClickHouse(16)ClickHouse日志引擎Log详细解析
- ClickHouse(17)ClickHouse集成JDBC表引擎详细解析
- ClickHouse(18)ClickHouse集成ODBC表引擎详细解析
- ClickHouse(19)ClickHouse集成Hive表引擎详细解析
- ClickHouse(20)ClickHouse集成PostgreSQL表引擎详细解析
ClickHouse(21)ClickHouse集成Kafka表引擎详细解析的更多相关文章
- ClickHouse(10)ClickHouse合并树MergeTree家族表引擎之ReplacingMergeTree详细解析
目录 建表语法 数据处理策略 资料分享 参考文章 MergeTree拥有主键,但是它的主键却没有唯一键的约束.这意味着即便多行数据的主键相同,它们还是能够被正常写入.在某些使用场合,用户并不希望数据表 ...
- ClickHouse(11)ClickHouse合并树MergeTree家族表引擎之SummingMergeTree详细解析
目录 建表语法 数据处理 汇总的通用规则 AggregateFunction 列中的汇总 嵌套结构数据的处理 资料分享 参考文章 SummingMergeTree引擎继承自MergeTree.区别在于 ...
- ClickHouse(12)ClickHouse合并树MergeTree家族表引擎之AggregatingMergeTree详细解析
目录 建表语法 查询和插入数据 数据处理逻辑 ClickHouse相关资料分享 AggregatingMergeTree引擎继承自 MergeTree,并改变了数据片段的合并逻辑.ClickHouse ...
- ClickHouse(13)ClickHouse合并树MergeTree家族表引擎之CollapsingMergeTree详细解析
目录 建表 折叠 数据 算法 资料分享 参考文章 该引擎继承于MergeTree,并在数据块合并算法中添加了折叠行的逻辑.CollapsingMergeTree会异步的删除(折叠)这些除了特定列Sig ...
- UniqueMergeTree:支持实时更新删除的 ClickHouse 表引擎
UniqueMergeTree 开发的业务背景 首先,我们看一下哪些场景需要用到实时更新. 我们总结了三类场景: 第一类是业务需要对它的交易类数据进行实时分析,需要把数据流同步到 ClickHouse ...
- Clickhouse表引擎之MergeTree
1.概述 在Clickhouse中有多种表引擎,不同的表引擎拥有不同的功能,它直接决定了数据如何读写.是否能够并发读写.是否支持索引.数据是否可备份等等.本篇博客笔者将为大家介绍Clickhouse中 ...
- ClickHouse入门:表引擎-HDFS
前言插件及服务器版本服务器:ubuntu 16.04Hadoop:2.6ClickHouse:20.9.3.45 文章目录 简介 引擎配置 HDFS表引擎的两种使用形式 引用 简介 ClickHous ...
- Clickhouse表引擎探究-ReplacingMergeTree
作者:耿宏宇 1 表引擎简述 1.1 官方描述 MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中.数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合 ...
- ClickHouse(07)ClickHouse数据库引擎解析
目录 Atomic 建表语句 特性 Table UUID RENAME TABLES DROP/DETACH TABLES EXCHANGE TABLES ReplicatedMergeTree in ...
- [MySQL数据库之表的详细操作:存储引擎、表介绍、表字段之数据类型]
[MySQL数据库之表的详细操作:存储引擎.表介绍.表字段之数据类型] 表的详细操作 存储引擎 mysql中建立的库======>文件夹 库中建立的表======>文件 用来存储数据的文件 ...
随机推荐
- js数据结构--栈
<!DOCTYPE html> <html> <head> <title></title> </head> <body&g ...
- ELK-WEB中文版化-redis高性能加速
1.ELK-WEB中文汉化版支持:(kibana所在机器执行)Kibana WEB平台所有的字段均显示为英文,目前5.x版本默认没有中文汉化版插件或者汉化包(7.x版本支持汉化默认有汉化),感谢Git ...
- MySQL索引、事务与存储引擎
MySQL索引.事务与存储引擎 索引介绍 1.索引的概念 索引是一个排序的列表,在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址(类似于C语言的链表通过指针指向数据记录的内存地址). 使用 ...
- How to write a proposal?
Most students and beginning researchers do not fully understand what a research proposal means, nor ...
- 用友vs金蝶产品分析(云星空与YonSuite)
产品定位 用友与金蝶二者面对的客户群体是相同的:都是为成长型企业提供一体化服务,由于金蝶云星空发展较早,在部分产品功能上具备一定的先发优势:在产品的架构上,由于YS采用目前最先进的云原生和微服务架构, ...
- JAVAweek7
本周学习[函数][数组] 什么是函数: 函数就是定义在类中的具有特定功能的一段独立小程序.函数也称为方法. 函数的格式: ·修饰符 返回值类型 函数名(参数类型 形式参数) { 执行语句: retur ...
- mysql可视化工具有哪些?优点是什么?
MySQL 是一种广泛使用的关系型数据库管理系统(RDBMS),由于其开放源代码和高度可定制化的优势,广受开发者欢迎.为了更加高效地管理 MySQL 数据库,我们通常需要使用 MySQL 可视化工具. ...
- HttpClient报错Timeout waiting for connection from pool
报错现象 线上项目使用HttpClient请求第三方的HTTP资源,并发量高的时候,日志框报Timeout waiting for connection from pool 客户端的现象是有时正常,有 ...
- [python][图像切割]给定手写数字图片完成数字切割
import torch import torch.nn as nn from torchvision import transforms from PIL import Image, ImageOp ...
- N100低功耗win11安装wsl2当入门nas
前言 最近入了一台16gb+512gb的N100,想着用来存些资源,当个nas,偶尔要用用windows系统,所以想直接在这上面搞个虚拟机算了,WSL2似乎是一个不错的选择,下面介绍捣鼓的教程. 没用 ...