【bzoj1415】[Noi2005]聪聪和可可 期望记忆化搜索
题目描述

输入
数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数。 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号。 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路。 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A。 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连。
输出
输出1个实数,四舍五入保留三位小数,表示平均多少个时间单位后聪聪会把可可吃掉。
样例输入
【输入样例1】
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9
样例输出
【输出样例1】
1.500
【输出样例2】
2.167
题解
期望记忆化搜索
先预处理出两个点之间的最短路,以及从那个点走来。
然后就是很水的期望dp。
设$f[i][j]$表示聪聪在$i$,可可在$j$时还要走的期望时间。
那么显然考虑$i$走两步到达的点$t$,$f[i][j]=\frac{\sum\limits_{dis[j][k]\le 1}f[t][k]}{d[j]+1}$。
由于两人距离一定是越来越小的,所以这个dp实际上是有序的(按照两点距离从小到大)。为了不特殊处理顺序,使用记忆化搜索就好了。
#include <queue>
#include <cstdio>
#include <algorithm>
#define N 1010
using namespace std;
queue<int> q;
int d[N] , head[N] , to[N << 1] , next[N << 1] , cnt , last[N][N] , dis[N][N];
double f[N][N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt , d[x] ++ ;
}
void bfs(int u)
{
int x , i;
last[u][u] = -1 , q.push(u);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(!last[u][to[i]]) last[u][to[i]] = x , dis[u][to[i]] = dis[u][x] + 1 , q.push(to[i]);
else if(dis[u][to[i]] == dis[u][x] + 1 && last[u][to[i]] > x) last[u][to[i]] = x;
}
}
}
double dfs(int x , int y)
{
if(dis[x][y] == 0) return 0;
if(f[x][y] > 0) return f[x][y];
if(dis[x][y] <= 2) return f[x][y] = 1;
int t = last[y][last[y][x]] , i;
double ret = dfs(t , y) / (d[y] + 1);
for(i = head[y] ; i ; i = next[i]) ret += dfs(t , to[i]) / (d[y] + 1);
return f[x][y] = ret + 1;
}
int main()
{
int n , m , p1 , p2 , x , y , i;
scanf("%d%d%d%d" , &n , &m , &p1 , &p2);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
for(i = 1 ; i <= n ; i ++ ) bfs(i);
printf("%.3lf\n" , dfs(p1 , p2));
return 0;
}
【bzoj1415】[Noi2005]聪聪和可可 期望记忆化搜索的更多相关文章
- BZOJ1415 聪聪和可可 —— 期望 记忆化搜索
题目链接:https://vjudge.net/problem/HYSBZ-1415 1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 16 ...
- 【NOI2005】聪聪和可可 概率与期望 记忆化搜索
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1635 Solved: 958[Submit][Statu ...
- UVa 11762 Race to 1 (数学期望 + 记忆化搜索)
题意:给定一个整数 n ,然后你要把它变成 1,变换操作就是随机从小于等于 n 的素数中选一个p,如果这个数是 n 的约数,那么就可以变成 n/p,否则还是本身,问你把它变成 1 的数学期望是多少. ...
- uva 11762 数学期望+记忆化搜索
题目大意:给一个正整数N,每次可以在不超过N的素数中随机选择一个P,如果P是N的约数,则把N变成N/p,否则N不变,问平均情况下需要多少次随机选择,才能把N变成1? 分析:根据数学期望的线性和全期望公 ...
- 1415. [NOI2005]聪聪和可可【记忆化搜索DP】
Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点 ...
- bzoj 1415 期望+记忆化搜索 ****
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdkAAAIfCAIAAACzfDFhAAAgAElEQVR4nOy9bVwTW57vm5fnhed+Pn
- BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】
题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1640 Solved: 962 Description I ...
随机推荐
- UVA 11404 Plalidromic Subsquence (回文子序列,LCS)
最长回文子序列可以用求解原串s和反转串rv的LCS来得到,因为要求回文串分奇偶,dp[i][j]保存长度, 要求字典序最小,dp[i][j]应该表示回文子序列的端点,所以边界为单个字符,即i+j=le ...
- hdu-1875 畅通工程再续---MST
题目链接: https://vjudge.net/problem/HDU-1875 题目大意: 相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小 ...
- 分布式版本控制系统git
最近看到这篇文章,简洁易懂,特摘抄至https://www.cnblogs.com/bgwhite/p/9403233.html 供大家提供参考. git可以说是世界上最先进的版本控制系统,大多语句的 ...
- MRCA|Wright–Fisher population genetic model|SNP rate
(Panda has a high heterozygosity rate) 通过对mtDNA(为了预测SNP的密度)的分析,可知panda的多样性,当前全基因组数据才能完全建立模型. mitocho ...
- 完结篇OO总结
目录 前言 一.第四单元两次架构设计 二.架构设计及OO方法理解的演进 三.测试理解与实践的演进 四.课程收获 五.改进建议 前言 持续了17周的OO终于走向了尾声,想想寒假的时候连类都不知道是什么, ...
- Nodejs:Node.js模块机制小结
今天读了<深入浅出Nodejs>的第二章:模块机制.现在做一个简单的小结. 序:模块机制大致从这几个部分来讲:JS模块机制的由来.CommonJS AMD CMD.Node模块机制和包和n ...
- servlet层调用biz业务层出现浏览器 500错误,解决方法 dao数据访问层 数据库Util工具类都可能出错 通过新建一个测试类复制代码逐步测试查找出最终出错原因
package com.swift.jztk.servlet; import java.io.IOException; import javax.servlet.ServletException; i ...
- SpringMVC 多视图解析器 跳转问题
在SpringMVC的配置文件中加入以下配置: <!-- 下面红色的配置必须要在--> <mvc:default-servlet-handler /> <bean id ...
- 进入docker容器并执行命令的的3中方法
进入docker容器并执行命令的的3中方法 docker exec nsenter docker attach "container" 建议使用nsenter, exec有 ...
- JZOJ 5196. 【NOIP2017提高组模拟7.3】B
5196. [NOIP2017提高组模拟7.3]B Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto Pro ...