并不对劲的loj3048:p5283:[十二省联考]异或粽子
题目大意
有\(n\)(\(n\leq5\times10^5\))个数\(a_1,a_2,...a_n\)(\(a_i\leq 2^{32}-1\))
求区间异或和前\(k(k\leq2\times10^5)\)大之和
题解
考虑二分,找出第\(k\)大异或和是多少
将每个位置上的数变成前缀异或和\(s_i\)后,建出可持久化trie树,第\(i\)个版本由\(0,s_1,s_2,..,s_i\)组成,trie树上每个点维护这个点的子树中有几个数
二分\(x\),判断是否有不超过\(k\)个异或和
发现这样时间复杂度为\(\Theta(n\times log^2 a)\),略多
发现一般情况下在线段树上二分时都不是先二分出一个值再查询,而是在线段树上边走边计算
同理,本题就可以维护\(n\)个位置,即当前走到的第\(i(i\in[1,n])\)个版本的trie树的位置
每次判断当前位放1会不会使大于等于当前值的异或和数量少于\(k\),会就走\(a_i\)当前位异或0的方向,反之就走\(a_i\)当前位异或1的方向
算出第\(k\)大异或和后,直接在trie树中dfs找出大于(注意,不能找等于它的,不然会找多)它的异或和,计入答案,顺便记一共加了几个数
\((k-上一步加的数的个数)\)就是等于第\(k\)大异或和的异或和的个数,把这个计入答案
以上两步中走到的点只有大于第\(k\)大异或和的点和它们的父亲,只有\(\Theta(k\times log\space a)\)
总时间复杂度\(\Theta((n+k)\times log\space a)\)
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define maxn 500003
#define maxnd (maxn*33)
#define LL long long
#define int LL
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(LL x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
LL ans,a[maxn],num;;
const int len=31;
int n,k,ch[maxnd][2],val[maxnd],rt[maxn],cntnd,now[maxn],nownum;
void ext(int i)
{
int u,nu=++cntnd;rt[i]=cntnd;
if(i)u=rt[i-1];
else u=0;
dwn(j,len,0)
{
int d=(a[i]&(1ll<<j))>>j;
if(u)val[nu]=val[u]+1,ch[nu][d^1]=ch[u][d^1],u=ch[u][d];
else val[nu]=1;
ch[nu][d]=++cntnd,nu=cntnd;
}
if(u)val[nu]=val[u]+1;
else val[nu]=1;
}
void getans(int u,LL ai,LL xi)
{
if(!ch[u][0]&&!ch[u][1]){if(((LL)ai^(LL)xi)>(LL)num){nownum+=val[u],ans=ans+(LL)((LL)ai^(LL)xi)*val[u];}return;}
if(ch[u][0])getans(ch[u][0],ai,xi<<1);
if(ch[u][1])getans(ch[u][1],ai,xi<<1|1);
return;
}
#define dd(x,y) ((x&(1ll<<y))>>y)
signed main()
{
n=read(),k=read();
rep(i,1,n)a[i]=read()^a[i-1];
rep(i,0,n)ext(i),now[i]=rt[i];
dwn(i,len,0)
{
int tmp=0;
rep(j,1,n)if(now[j]){tmp+=val[ch[now[j]][dd(a[j],i)^1ll]];}
if(tmp+nownum>=k){rep(j,1,n)if(now[j])now[j]=ch[now[j]][dd(a[j],i)^1ll];num=num<<(1ll)|(1ll);}
if(tmp+nownum<k){rep(j,1,n)if(now[j])now[j]=ch[now[j]][dd(a[j],i)];nownum+=tmp;num=num<<(1ll);}
}
nownum=0;
rep(i,1,n)
{
int u=rt[i],vv=0;
dwn(j,len,0)
{
int d=dd(a[i],j),e=dd(num,j);
if(!e&&ch[u][d^1]){getans(ch[u][d^1],a[i],vv<<1|(d^1));}
if(!ch[u][d^e])break;
u=ch[u][d^e],vv=vv<<1|(d^e);
}
}
ans+=(LL)num*(k-nownum);
write(ans);
return 0;
}
/*
3 2
1 2 3
*/
一些感想
sb猎人公会nmsl
并不对劲的loj3048:p5283:[十二省联考]异或粽子的更多相关文章
- 【简】题解 P5283 [十二省联考2019]异或粽子
传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...
- LOJ3048 「十二省联考 2019」异或粽子
题意 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具 ...
- 洛谷P5283 & LOJ3048:[十二省联考2019]异或粽子——题解
https://www.luogu.org/problemnew/show/P5283 https://loj.ac/problem/3048 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子 ...
- Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】
联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...
- Luogu P5283 [十二省联考2019]异或粽子
感觉不是很难的一题,想了0.5h左右(思路歪了,不过想了一个大常数的两只\(\log\)做法233) 然后码+调了1h,除了一个SB的数组开小外基本上也没什么坑点 先讲一个先想到的方法,我们对于这种问 ...
- P5283 [十二省联考2019]异或粽子
考场上想到了没打完,细节思路还是不是很优,我原先的想法是每一次找完后标记那个点,下次再继续找(并不是这个意思,说不清楚)但实际上和平衡树一样加个大小就很好写了 #include<bits/std ...
- P5283 [十二省联考2019]异或粽子 可持久化01Trie+线段树
$ \color{#0066ff}{ 题目描述 }$ 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 \(n\) 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 ...
- 并不对劲的loj3049:p5284:[十二省联考]字符串问题
题目大意 给出字符串\(S(|S|\leq2\times10^5)\), \(na(na\leq2\times 10^5)\)个区间\([l_i,r_i]\)表示\(S_{l_i},S_{l_i+1} ...
- 【题解】Luogu P5283 [十二省联考2019]异或粽子
原题传送门 看见一段的异或和不难想到要做异或前缀和\(s\) 我们便将问题转化成:给定\(n\)个数,求异或值最靠前的\(k\)对之和 我们珂以建一个可持久化01trie,这样我们就珂以求出每个值\( ...
随机推荐
- 【bootstrap】bootstrap中的tooltip的使用
先看看效果图:[当光标放在下面这个时间搜索框上时,显示一段文字:搜索时间段中的流水信息] 这样的效果,怎么实现呢? 很简单 1.引入jQuery.js和bootstrap的js和css 2.给想要有t ...
- win10 nginx + django +flup 配置
1 安装 Nginx 官网下载,直接点exe启动即可 2 安装django pip install django 注意 新建立项目时 python *****/django-admin.py star ...
- 高通msm8994启动流程简单介绍
处理器信息 8994包括例如以下子系统: 子系统 处理器 含义 APSS 4*Cortex-A53 应用子系统 APSS 4*Cortex-A57 应用子系统 LPASS QDSP6 v5.5A(He ...
- eclipse下的ssh框架整合过程及測试
最近在搭建Stuts2+hibernate+spring的框架,网上看的教程,大部分都是非常easy的步骤.没有比較具体的步骤以及每一个步骤完毕之后怎样检查是否配置成功.下面是笔者依据自己搭建的过程进 ...
- ios You app information could not be saved. Try again. If the problem persists, contact us
ios You app information could not be saved. Try again. If the problem persists, contact us 大概意思:你的a ...
- linux查看命令总结
通过命令+文件名查看内容.如下命令可以查看.1, cat :由第一行开始显示文件内容:2,tac:从最后一行开始显示,可以看出tac与cat字母顺序相反:3,nl:显示的时候输出行号:4,more:一 ...
- Allegro16.6和17.0和17.2中将板框导出DXF文件
Allegro16.6和17.0和17.2中将板框导出DXF文件 转载 https://blog.csdn.net/pieces_thinking/article/details/69817600 标 ...
- javascript 高级编程系列 - 继承
1. 原型链继承 (缺点:子类继承父类的引用类型的属性值会在各个实例中共享,创建子类实例时无法向父类构造函数传递参数) // 定义父类构造函数 function SuperClass(father, ...
- VS2010配置QT5.5.0开发环境
一.官网下载QT和qtvsaddin插件 网址:http://www.qt.io/download-open-source/ 1. 2. 3. 得到下载的安装包,点击安装就能够了 watermark/ ...
- ubuntu 16.04 更新 gcc/g++ 4.9.2
ubuntu 转载 2016年10月12日 :: 标签:ubuntu /g++ /gcc [html] view plain copy sudo dpkg -l g++ 最近在学C++primer , ...