In this article, we dicuss some main steps in data preparation.

Drop Labels

Firstly, we drop labels for train set. Here we use drop() method in Pandas library.

housing = strat_train_set.drop("median_house_value", axis=1) # drop labels for training set
housing_labels = strat_train_set["median_house_value"].copy()

Here are some tips:

  • The drop funtion deletes rows by default. If you want to delete columns, don't forget to set the parameter axis=1.
  • The drop function doesn't change the DataFrame by default.  And instead, returns to you a copy of the DataFrame with the given rows/columns removed. Or you can set inplace = True.
  • Note the function copy() here. It creates a copy that will not affect the original DataFrame

Impute Missing Values

Firstly, let's check the missing values:

sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()

Here give three methods to impute missing values:

Option 1: drop the rows

sample_incomplete_rows.dropna(subset=["total_bedrooms"])

Option 2: drop the columns

sample_incomplete_rows.drop("total_bedrooms", axis=1) 

Option 3: impute with the median value

median = housing["total_bedrooms"].median()
sample_incomplete_rows["total_bedrooms"].fillna(median, inplace=True)

Alternatively, we can import sklearn.impute.SimpleImputer class in Scikit-Learn 0.20.

 try:
from sklearn.impute import SimpleImputer # Scikit-Learn 0.20+
except ImportError:
from sklearn.preprocessing import Imputer as SimpleImputer imputer = SimpleImputer(strategy="median")
# Remove the text attribute because median can only be calculated on numerical attributes
housing_num = housing.drop('ocean_proximity', axis=1)
# alternatively: housing_num = housing.select_dtypes(include=[np.number])
imputer.fit(housing_num)

We can check the statistcs by imputer.statistics_ and the strategy by imputer.strategy

Finally, transform the train set:

 X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns,
index = list(housing.index.values))

Encode Categorical Attributes

We need to convert text labels to numbers. There are two methods.

Option 1: Label Encoding

Conver a categorical attribute into an interger attribute.

 try:
from sklearn.preprocessing import OrdinalEncoder
except ImportError:
from future_encoders import OrdinalEncoder # Scikit-Learn < 0.20 ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)

Option2: One-Hot Encoding

Convert a categorical attribute into a series of binary intergers.

 try:
from sklearn.preprocessing import OrdinalEncoder # just to raise an ImportError if Scikit-Learn < 0.20
from sklearn.preprocessing import OneHotEncoder
except ImportError:
from future_encoders import OneHotEncoder # Scikit-Learn < 0.20 cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)

By default, the OneHotEncoder class returns a sparse array, but we can convert it to a dense array if needed by calling the toarray()method:

housing_cat_1hot.toarray()

Alternatively, you can set sparse=False when creating the OneHotEncoder:

cat_encoder = OneHotEncoder(sparse=False)
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)

Feature Engineering

Sometimes, we need to add some features to better describe the variation of the target variable. Let's create a custom transformer to add extra attributes and implement three methods: fit()(returning self), transform(), and fit_transform(). You can get the last one for free by simply adding TransformerMixin as a base class. Also, if you add BaseEstima tor as a base class (and avoid *args and **kargs in your constructor) you will get two extra methods (get_params() and set_params()) that will be useful for auto‐ matic hyperparameter tuning.

 from sklearn.base import BaseEstimator, TransformerMixin

 # column index
rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6 class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
self.add_bedrooms_per_room = add_bedrooms_per_room
def fit(self, X, y=None):
return self # nothing else to do
def transform(self, X, y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
population_per_household = X[:, population_ix] / X[:, household_ix]
if self.add_bedrooms_per_room:
bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
return np.c_[X, rooms_per_household, population_per_household,
bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household] attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)

[Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn的更多相关文章

  1. [Machine Learning with Python] Data Preparation through Transformation Pipeline

    In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...

  2. [Machine Learning with Python] Data Visualization by Matplotlib Library

    Before you can plot anything, you need to specify which backend Matplotlib should use. The simplest ...

  3. Python (1) - 7 Steps to Mastering Machine Learning With Python

    Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Fo ...

  4. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  5. 《Learning scikit-learn Machine Learning in Python》chapter1

    前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...

  6. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  7. In machine learning, is more data always better than better algorithms?

    In machine learning, is more data always better than better algorithms? No. There are times when mor ...

  8. Coursera, Big Data 4, Machine Learning With Big Data (week 1/2)

    Week 1 Machine Learning with Big Data KNime - GUI based Spark MLlib - inside Spark CRISP-DM Week 2, ...

  9. Machine Learning的Python环境设置

    Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把 ...

随机推荐

  1. 15,scrapy中selenium的应用

    引入 在通过scrapy框架进行某些网站数据爬取的时候,往往会碰到页面动态数据加载的情况发生如果直接用scrapy对其url发请求,是获取不到那部分动态加载出来的数据值,但是通过观察会发现,通过浏览器 ...

  2. vijos1083:小白逛公园

    小白逛公园 描述 小新经常陪小白去公园玩,也就是所谓的遛狗啦…在小新家附近有一条“公园路”,路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了. 一开始,小白就根据公园的 ...

  3. oracle 基本函数

    1)字符串函数---length()函数 用于返回字符串长度  select t.name,length(t.name) from tb_person t 2)向左补全字符串---LPAD()函数 L ...

  4. day38--MySQL基础二

    1.数据库连表 1.1, 一对多 使用外键做约束.注意:外键列的数据类型要一致. 命令的方式创建外键CREATE table part1( nid int not null auto_incremen ...

  5. 将FragmentManger事务添加到返回栈中

    FragmentManger事务添加或替换的 Fragment 后,这时点击 Back 键,程序并不会返回添加之前的状态. 我们可以使用 Transaction 对象的 addToBackStack( ...

  6. Java资料整理

    Java资料整理 原创 2017年08月25日 17:20:44 14211  1.LocalThread的应用场景,数据传输适合用LocalThread么 2.linux的基本命令    软链接.更 ...

  7. python - 接口自动化测试 - TestRegister - 注册接口测试用例

    # -*- coding:utf-8 -*- ''' @project: ApiAutoTest @author: Jimmy @file: test_register.py @ide: PyChar ...

  8. python 学习分享-面向对象2

    面向对象进阶 静态方法 一种普通函数,就位于类定义的命名空间中,它不会对任何实例类型进行操作.使用装饰器@staticmethod定义静态方法.类对象和实例都可以调用静态方法: class Foo: ...

  9. redis命令monitor详解

    通过monitor这个命令可以查看数据库在当前做了什么操作,对于管理redis数据库有这很大的帮助 如图示,在redis客户端进行操作显示info,另一个窗口打开monitor就会显示出这个命令的操作 ...

  10. “取出数据表中第10条到第20条记录”的sql语句+selecttop用法

    1.首先,select top用法: 参考问题 select top n * from和select * from的区别 select * from table -- 取所有数据,返回无序集合 sel ...