[Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn
In this article, we dicuss some main steps in data preparation.
Drop Labels
Firstly, we drop labels for train set. Here we use drop() method in Pandas library.
housing = strat_train_set.drop("median_house_value", axis=1) # drop labels for training set
housing_labels = strat_train_set["median_house_value"].copy()
Here are some tips:
- The drop funtion deletes rows by default. If you want to delete columns, don't forget to set the parameter axis=1.
- The
dropfunction doesn't change the DataFrame by default. And instead, returns to you a copy of the DataFrame with the given rows/columns removed. Or you can set inplace = True. - Note the function copy() here. It creates a copy that will not affect the original DataFrame
Impute Missing Values
Firstly, let's check the missing values:
sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()
Here give three methods to impute missing values:
Option 1: drop the rows
sample_incomplete_rows.dropna(subset=["total_bedrooms"])
Option 2: drop the columns
sample_incomplete_rows.drop("total_bedrooms", axis=1)
Option 3: impute with the median value
median = housing["total_bedrooms"].median()
sample_incomplete_rows["total_bedrooms"].fillna(median, inplace=True)
Alternatively, we can import sklearn.impute.SimpleImputer class in Scikit-Learn 0.20.
try:
from sklearn.impute import SimpleImputer # Scikit-Learn 0.20+
except ImportError:
from sklearn.preprocessing import Imputer as SimpleImputer imputer = SimpleImputer(strategy="median")
# Remove the text attribute because median can only be calculated on numerical attributes
housing_num = housing.drop('ocean_proximity', axis=1)
# alternatively: housing_num = housing.select_dtypes(include=[np.number])
imputer.fit(housing_num)
We can check the statistcs by imputer.statistics_ and the strategy by imputer.strategy
Finally, transform the train set:
X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns,
index = list(housing.index.values))
Encode Categorical Attributes
We need to convert text labels to numbers. There are two methods.
Option 1: Label Encoding
Conver a categorical attribute into an interger attribute.
try:
from sklearn.preprocessing import OrdinalEncoder
except ImportError:
from future_encoders import OrdinalEncoder # Scikit-Learn < 0.20 ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)
Option2: One-Hot Encoding
Convert a categorical attribute into a series of binary intergers.
try:
from sklearn.preprocessing import OrdinalEncoder # just to raise an ImportError if Scikit-Learn < 0.20
from sklearn.preprocessing import OneHotEncoder
except ImportError:
from future_encoders import OneHotEncoder # Scikit-Learn < 0.20 cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
By default, the OneHotEncoder class returns a sparse array, but we can convert it to a dense array if needed by calling the toarray()method:
housing_cat_1hot.toarray()
Alternatively, you can set sparse=False when creating the OneHotEncoder:
cat_encoder = OneHotEncoder(sparse=False)
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
Feature Engineering
Sometimes, we need to add some features to better describe the variation of the target variable. Let's create a custom transformer to add extra attributes and implement three methods: fit()(returning self), transform(), and fit_transform(). You can get the last one for free by simply adding TransformerMixin as a base class. Also, if you add BaseEstima tor as a base class (and avoid *args and **kargs in your constructor) you will get two extra methods (get_params() and set_params()) that will be useful for auto‐ matic hyperparameter tuning.
from sklearn.base import BaseEstimator, TransformerMixin # column index
rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6 class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
self.add_bedrooms_per_room = add_bedrooms_per_room
def fit(self, X, y=None):
return self # nothing else to do
def transform(self, X, y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
population_per_household = X[:, population_ix] / X[:, household_ix]
if self.add_bedrooms_per_room:
bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
return np.c_[X, rooms_per_household, population_per_household,
bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household] attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)
[Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn的更多相关文章
- [Machine Learning with Python] Data Preparation through Transformation Pipeline
In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...
- [Machine Learning with Python] Data Visualization by Matplotlib Library
Before you can plot anything, you need to specify which backend Matplotlib should use. The simplest ...
- Python (1) - 7 Steps to Mastering Machine Learning With Python
Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Fo ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- 《Learning scikit-learn Machine Learning in Python》chapter1
前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...
- 【Machine Learning】Python开发工具:Anaconda+Sublime
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...
- In machine learning, is more data always better than better algorithms?
In machine learning, is more data always better than better algorithms? No. There are times when mor ...
- Coursera, Big Data 4, Machine Learning With Big Data (week 1/2)
Week 1 Machine Learning with Big Data KNime - GUI based Spark MLlib - inside Spark CRISP-DM Week 2, ...
- Machine Learning的Python环境设置
Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把 ...
随机推荐
- 15,scrapy中selenium的应用
引入 在通过scrapy框架进行某些网站数据爬取的时候,往往会碰到页面动态数据加载的情况发生如果直接用scrapy对其url发请求,是获取不到那部分动态加载出来的数据值,但是通过观察会发现,通过浏览器 ...
- vijos1083:小白逛公园
小白逛公园 描述 小新经常陪小白去公园玩,也就是所谓的遛狗啦…在小新家附近有一条“公园路”,路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了. 一开始,小白就根据公园的 ...
- oracle 基本函数
1)字符串函数---length()函数 用于返回字符串长度 select t.name,length(t.name) from tb_person t 2)向左补全字符串---LPAD()函数 L ...
- day38--MySQL基础二
1.数据库连表 1.1, 一对多 使用外键做约束.注意:外键列的数据类型要一致. 命令的方式创建外键CREATE table part1( nid int not null auto_incremen ...
- 将FragmentManger事务添加到返回栈中
FragmentManger事务添加或替换的 Fragment 后,这时点击 Back 键,程序并不会返回添加之前的状态. 我们可以使用 Transaction 对象的 addToBackStack( ...
- Java资料整理
Java资料整理 原创 2017年08月25日 17:20:44 14211 1.LocalThread的应用场景,数据传输适合用LocalThread么 2.linux的基本命令 软链接.更 ...
- python - 接口自动化测试 - TestRegister - 注册接口测试用例
# -*- coding:utf-8 -*- ''' @project: ApiAutoTest @author: Jimmy @file: test_register.py @ide: PyChar ...
- python 学习分享-面向对象2
面向对象进阶 静态方法 一种普通函数,就位于类定义的命名空间中,它不会对任何实例类型进行操作.使用装饰器@staticmethod定义静态方法.类对象和实例都可以调用静态方法: class Foo: ...
- redis命令monitor详解
通过monitor这个命令可以查看数据库在当前做了什么操作,对于管理redis数据库有这很大的帮助 如图示,在redis客户端进行操作显示info,另一个窗口打开monitor就会显示出这个命令的操作 ...
- “取出数据表中第10条到第20条记录”的sql语句+selecttop用法
1.首先,select top用法: 参考问题 select top n * from和select * from的区别 select * from table -- 取所有数据,返回无序集合 sel ...