Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1条边即可。

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn=;
int v,l;///v代表点的个数,l代表边的个数
int fa[maxn],son[maxn];
struct Kruskal{///该结构体时存储点与这两点之间的距离的
int a,b;
int value;
}edge[maxn];
bool cmp(Kruskal x,Kruskal y){///把边的权值按从小到大的顺序排列
return x.value<y.value;
}
int fin(int x)///寻找x的根结点
{
return fa[x]==x?fa[x]:fin(fa[x]);
}
bool unin(int x,int y)
{
int root1,root2;
root1=fin(x);
root2=fin(y);
if(root1==root2){
return false;///当输入的两个点有相同的根结点时成环,返回false
}
else if(son[root1]>=son[root2]){
fa[root2]=root1;///root2的根结点时root1
son[root1]+=son[root2];///把数量少的那棵树连接到数量多的那棵树
}
else {
fa[root1]=root2;
son[root2]+=son[root1];
}
return true;///只要两个点不在同一个根结点上就返回true
}
int main()
{
int n,total,sum,flag;
cin>>n;
while(n--){
cin>>v>>l;
total=;
sum=;
flag=;
for(int i=;i<=v;i++){///初始化
fa[i]=i;
son[i]=;
}
for(int i=;i<=l;i++){
cin>>edge[i].a>>edge[i].b>>edge[i].value; }
sort(edge+,edge++l,cmp);///因为edge时从1开始的,所以edge要+1
for(int i=;i<=l;i++){
if(unin(edge[i].a,edge[i].b)){
total++;
sum+=edge[i].value;///记录最小的权值
cout<<edge[i].a<<"->"<<edge[i].b<<endl;
}
if(total==v-){///有n个结点就有n-1条边构成最小生成树
flag=;
break;
} }
if(flag)cout<<sum<<endl;
else cout<<"data error ."<<endl; }
}

最小生成树Kruskal算法的更多相关文章

  1. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  2. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  3. 最小生成树------Kruskal算法

    Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...

  4. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  5. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  6. 算法实践--最小生成树(Kruskal算法)

    什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...

  7. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  8. 数据结构之最小生成树Kruskal算法

    1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...

  9. 数据结构:最小生成树--Kruskal算法

    Kruskal算法 Kruskal算法 求解最小生成树的还有一种常见算法是Kruskal算法.它比Prim算法更直观.从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条 ...

随机推荐

  1. Python基础教程【读书笔记】 - 2016/8/3

    希望通过博客园持续的更新,分享和记录Python基础知识到高级应用的点点滴滴! 第十一波:第11章  文件和素材 本章更进一步,让程序能够接触更多的领域:文件和流.接下来介绍的函数和对象可以让你在程序 ...

  2. bzoj1382: [Baltic2001]Mars Maps

    Description 给出N个矩形,N<=10000.其坐标不超过10^9.求其面积并 Input 先给出一个数字N,代表有N个矩形. 接下来N行,每行四个数,代表矩形的坐标. Output ...

  3. 51nod1253 Kundu and Tree

    树包含N个点和N-1条边.树的边有2中颜色红色('r')和黑色('b').给出这N-1条边的颜色,求有多少节点的三元组(a,b,c)满足:节点a到节点b.节点b到节点c.节点c到节点a的路径上,每条路 ...

  4. Python输入和输出

    在很多时候,你会想要让你的程序与用户(可能是你自己)交互.你会从用户那里得到输入,然后打印一些结果.我们可以分别使用raw_input和print语句来完成这些功能.对于输出,你也可以使用多种多样的s ...

  5. 【freemaker】之整合springMVC

    pom.xml文件 <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncod ...

  6. js常用方法收集

    JS获取地址栏制定参数值: //获取URL参数的值 function getUrlParam(name){ var reg = new RegExp("(^|&)"+ na ...

  7. 创建 Windows 7/8 的计算机修复光盘或工具

    Windows 7 Windows 8 控制面板--系统和安全--操作中心--恢复

  8. 我的Android最佳实践之—— ImageView中图片拉伸显示

    通过设置android:scaleType="fitXY"使得图片拉伸显示.补充:scaleType的属性有matrix(默认).center.centerCrop.centerI ...

  9. GR&R

    ANOVA gauge R&R (or ANOVA gauge repeatability and reproducibility) is a measurement systems anal ...

  10. RAC_Oracle集群服务安装Grid Infrastructure(案例)

    2015-01-24 Created By BaoXinjian Thanks and Regards