Codeforces.264E.Roadside Trees(线段树 DP LIS)
\(Description\)

\(Solution\)
还是看代码好理解吧。
为了方便,我们将x坐标左右反转,再将所有高度取反,这样依然是维护从左到右的LIS,但是每次是在右边删除元素。
这样对于在p刚种的树,最多只有9棵树比它高,即它只会转移到这9棵树,除这9棵树外,它可以从1~p-1的任何树转移(其它9棵树除比它高的外 同样可以从它前面任何树转移)。
我们把这9棵树的DP值暴力删掉,然后从低到高 从1~pos[h]-1转移并更新。按高度更新就只需要考虑位置合不合法了。
我们对位置建线段树维护每个位置的DP值,就只有单点修改、区间max。
对于砍掉右数第k棵树,设位置为p,因为只有右边最多9棵树从它转移,同样将它们的DP值暴力删掉,然后删掉位置p的DP值。
但是右边10棵树不一定是最高的,虽然它们可以从前面所有树转移,但还要满足高度小于它们。
这可以二维线段树。但是我们只需要用另一棵线段树对每个高度维护同样的DP值(不同位置高度不同),就可以从左到右,直接用线段树查询并更新了。
这样在一棵线段树上更新完DP值后在另一棵上改一下即可。
复杂度\(O(10n\log n)\)。
总结:是最高的10棵就在维护位置DP值的线段树上转移,是最靠右的10棵就在维护高度DP值的线段树上转移。最后更新一下另一棵的DP值(都维护一样的)。
//840ms 12800KB
#include <set>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define MAXIN 50000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=2e5+15;
int pos[N],h[N];
std::set<int> st;
char IN[MAXIN],*SS=IN,*TT=IN;
struct Segment_Tree
{
#define ls rt<<1
#define rs rt<<1|1
#define lson l,m,ls
#define rson m+1,r,rs
#define S N<<2
int f[N],mx[S];
#undef S
#define Update(rt) mx[rt]=std::max(mx[ls],mx[rs])
void Modify(int l,int r,int rt,int p,int v)
{
if(l==r) {mx[rt]=v; return;}
int m=l+r>>1;
if(p<=m) Modify(lson,p,v);
else Modify(rson,p,v);
Update(rt);
}
int Query(int l,int r,int rt,int R)
{
if(r<=R) return mx[rt];
int m=l+r>>1;
if(m<R) return std::max(Query(lson,R),Query(rson,R));
return Query(lson,R);
}
void Insert(int p,int n)//对于新插入的p查询DP值并更新
{
Modify(0,n,1,p,f[p]=Query(0,n,1,p-1)+1);
}
}Tp,Th;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
#define Sp 0,n,1
#define Sh 0,m+10,1
int n=read(),m=read();//pos[i]:高i的树的位置 h[i]:i位置的树的高度
for(int t=1; t<=m; ++t)
if(read()==1)//plant
{
int p=n-read()+1,ht=t+10-read();
pos[ht]=p, h[p]=ht, st.insert(p);
for(int i=ht+1; i<=ht+9; ++i)
if(pos[i]) Tp.Modify(Sp,pos[i],0);
for(int i=ht; i<=ht+9; ++i)
if(pos[i])
{
Tp.Insert(pos[i],n);
Th.f[i]=Tp.f[pos[i]];
Th.Modify(Sh,i,Th.f[i]);
}
printf("%d\n",Tp.mx[1]);
}
else
{
int k=read();
std::set<int>::iterator it=st.end();
while(k--) --it, Th.Modify(Sh,h[*it],0);
Tp.Modify(Sp,*it,0), pos[h[*it]]=0;
for(st.erase(it++); it!=st.end(); ++it)
{
Th.Insert(h[*it],m+10);
Tp.f[*it]=Th.f[h[*it]];
Tp.Modify(Sp,*it,Tp.f[*it]);
}
printf("%d\n",Tp.mx[1]);
}
return 0;
}
Codeforces.264E.Roadside Trees(线段树 DP LIS)的更多相关文章
- Codeforces.833B.The Bakery(线段树 DP)
题目链接 \(Description\) 有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少 \(Solution\) DP,用\(f[i][j]\)表示当前在i 分成了j份(第 ...
- CodeForces–833B--The Bakery(线段树&&DP)
B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- 线段树解LIS
先是nlogn的LIS解法 /* LIS nlogn解法 */ #include<iostream> #include<cstring> #include<cstdio& ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)
[题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...
- HDU 3016 Man Down (线段树+dp)
HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- Buses and People CodeForces 160E 三维偏序+线段树
Buses and People CodeForces 160E 三维偏序+线段树 题意 给定 N 个三元组 (a,b,c),现有 M 个询问,每个询问给定一个三元组 (a',b',c'),求满足 a ...
- CodeForces 877E DFS序+线段树
CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...
- [Codeforces 1199D]Welfare State(线段树)
[Codeforces 1199D]Welfare State(线段树) 题面 给出一个长度为n的序列,有q次操作,操作有2种 1.单点修改,把\(a_x\)修改成y 2.区间修改,把序列中值< ...
随机推荐
- Win7 启动修复
先让我们看一下windows7的启动过程的常识:电脑加电后,首先是启动BIOS程序,BIOS自检完毕后,找到硬盘上的主引导记录MBR,MBR读取DPT(分区表),从中找出活动的主分区,然后读取活动主分 ...
- 笔记软件 notion
笔记软件 notion : https://www.notion.so 注册:zengxinle@126.com 团队:Hopesun
- xargs -i和-I的区别【转】
xargs与find经常结合来进行文件操作,平时删日志的时候只是习惯的去删除,比如 # find . -type f -name "*.log" | xargs rm -rf * ...
- mysql删除数据库文件ibdata1后引发的故障
进行性能测试是发现大量报错: Duplicate entry主键重复 可以看到mysql数据库中已经没有innodb引擎启动信息了 之前发现ibdata1占用了大量硬盘,为了省出空间删除了数据库ibd ...
- Eclipse与github整合
Eclipse与github整合 Windows系统下: github官方指南:https://help.github.com/articles/set-up-git Git?是个正快速成长的版本控制 ...
- [java]用md5来判断两个文件是否完全相同
1. 前言 由于相比较两张图片是否是相同,如果通过像素点比较感觉速度比较慢,当很多图片进行比较时,效率就低很多了.由于每个文件md5基本上是唯一的,所以用获取文件的md5来判断是否相同文件. 2. 代 ...
- swift的一些知识点(不断完善中)
首先,隆重推荐文章http://www.infoq.com/cn/articles/swift-brain-gym-optional swift 烧脑体操!目前有4篇文章,说的都很好! 1. 应该充分 ...
- PYTHON-TCP 粘包
1.TCP的模板代码 收发消息的循环 通讯循环 不断的连接客户端循环 连接循环 判断 用于判断客户端异常退出(抛异常)或close(死循环) 半连接池backlog listen(5) 占用的是内存空 ...
- Route pattern cannot reference variable name more than once
在用 Laravel Backpack 写一个定制化的 CRUD 页面.例如,一个指定店铺所拥有的商品的 CRUD 页面. 起初路由我是这样写的 CRUD::resource('products-of ...
- linux 卸载自带apache httpd 安装apache httpd
一.卸载自带apache httpd 1.关闭httpd服务:/etc/init.d/httpd stop 2.列出相关程序包:rpm -qa|grep httpd 3.卸载命令:rpm -e --n ...