Description

今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。

全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接。为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号。其中SZ市的编号为 1。对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv 以及到父亲城市道路的长度 sv。

从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交通工具到达 a。再选择城市 a 的一个祖先 b,支付费用并到达 b。以此类推,直至到达SZ市。

对于任意一个城市 v,我们会给出一个交通工具的距离限制 lv。对于城市 v 的祖先 a,只有当它们之间所有道路的总长度不超过 lv 时,从城市 v 才可以通过一次购票到达城市 a,否则不能通过一次购票到达。对于每个城市 v,我们还会给出两个非负整数 pv,qv 作为票价参数。若城市 v 到城市 a 所有道路的总长度为 d,那么从城市 v 到城市 a 购买的票价为 dpv+qv。

每个城市的OIer都希望自己到达SZ市时,用于购票的总资金最少。你的任务就是,告诉每个城市的OIer他们所花的最少资金是多少。

Solution

这题坑死我了

正解:斜率优化DP

容易推出 \(f[i]=f[v]+(dis[i]-dis[v])*p[i]+q[i]\) \(v\)为某个祖先

化成斜率优化的形式:\(f[v]=dis[v]*p[i]+f[i]-q[i]-dis[i]*p[i]\)

所以相当于使用 \(k=p[i],b=f[i]-q[i]+dis[i]*p[i]\) 的直线去割若干个点 \((dis[v],f[v])\)

因为转移是在父子之间的,所以可以分治.

1.首先递归父亲所在块

2.用父亲所在的块更新所有儿子所在的块

3.递归处理所有的儿子

更新的方式大致是:

儿子按 \(dis[i]-l[i]\) 排序,把符合要求的点加入,维护凸包(然而大佬们都是半平面交),三分合适的斜率.

口胡完了,实现也比较简单

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=200005;
int TT,head[N],num=0,nxt[N<<1],to[N<<1];ll c[N<<1];
ll dis[N],p[N],q[N],lim[N],inf;int n,fa[N];bool vis[N];
inline void link(int x,int y,ll z){
nxt[++num]=head[x];to[num]=y;c[num]=z;head[x]=num;
}
int sz[N],son[N]={N},sum,rt;
inline void getroot(int x,int last){
sz[x]=1;son[x]=0;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(vis[u] || u==last)continue;
getroot(u,x);
sz[x]+=sz[u];son[x]=max(son[x],sz[u]);
}
son[x]=max(son[x],sum-sz[x]);
if(son[x]<son[rt])rt=x;
}
inline void priwork(int x,int last){
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(u==last)continue;
dis[u]=dis[x]+c[i];fa[u]=x;
priwork(u,x);
}
}
int Q[N],cnt=0,pre[N],a[N],tot=0,st[N];ll f[N];
inline void bfs(int S){
int t=0;cnt=0;
Q[++cnt]=S;pre[S]=fa[S];
while(t!=cnt){
int x=Q[++t];
for(int i=head[x];i;i=nxt[i]){
if(to[i]==pre[x] || vis[to[i]])continue;
Q[++cnt]=to[i];pre[to[i]]=x;
}
}
for(int i=1;i<=cnt;i++)pre[Q[i]]=0;
}
inline void dfs(int x,int root){
if(!x)return ;
a[++tot]=x;
if(x==root)return ;
if(fa[x])dfs(fa[x],root);
}
inline bool comp(int i,int j){
if(dis[i]!=dis[j])return dis[i]>dis[j];
return f[i]<f[j];
}
inline bool compdis(int i,int j){
return dis[i]-lim[i]>dis[j]-lim[j];
}
inline void calc(int x,int root){
bfs(x);
tot=0;dfs(fa[x],root);
sort(a+1,a+tot+1,comp);
sort(Q+1,Q+cnt+1,compdis);
int top=0,r=1;
for(int i=1;i<=cnt;i++){
int x=Q[i];
while(r<=tot && dis[x]-lim[x]<=dis[a[r]]){
while(top>=2 &&
(f[a[r]]-f[st[top]])/(dis[a[r]]-dis[st[top]])>
(f[st[top]]-f[st[top-1]])/(dis[st[top]]-dis[st[top-1]]))top--;
st[++top]=a[r++];
}
int L=1,R=top,mid,ret=top,ml,mr;
while(L<=R){
mid=(L+R)>>1;
ml=(L+mid)>>1;mr=(mid+1+R)>>1;
if(f[st[ml]]-dis[st[ml]]*p[x]<=f[st[mr]]-dis[st[mr]]*p[x])ret=ml,R=mr-1;
else ret=mr,L=ml+1;
}
f[x]=min(f[x],f[st[ret]]+(dis[x]-dis[st[ret]])*p[x]+q[x]);
}
}
inline void solve(int x,int root){
vis[x]=1;
if(fa[x] && !vis[fa[x]])
rt=0,sum=sz[fa[x]],getroot(fa[x],x),solve(rt,root);
calc(x,root);
for(int i=head[x];i;i=nxt[i]){
if(vis[to[i]] || to[i]==fa[x])continue;
rt=0;sum=sz[to[i]];getroot(to[i],x);solve(rt,x);
}
}
void work()
{
int x;ll y;
scanf("%d%d",&n,&TT);
for(int i=2;i<=n;i++){
scanf("%d%lld%lld%lld%lld",&x,&y,&p[i],&q[i],&lim[i]);
link(x,i,y);link(i,x,y);
}
memset(f,127/3,sizeof(f));f[1]=0;inf=f[0];
priwork(1,1);getroot(1,1);
solve(1,1);
for(int i=2;i<=n;i++)printf("%lld\n",f[i]);
}
int main()
{
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
work();
return 0;
}

bzoj 3672: [Noi2014]购票的更多相关文章

  1. BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)

    前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...

  2. bzoj 3672: [Noi2014]购票 树链剖分+维护凸包

    3672: [Noi2014]购票 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 480  Solved: 212[Submit][Status][D ...

  3. BZOJ 3672: [Noi2014]购票( 树链剖分 + 线段树 + 凸包 )

    s弄成前缀和(到根), dp(i) = min(dp(j) + (s(i)-s(j))*p(i)+q(i)). 链的情况大家都会做...就是用栈维护个下凸包, 插入时暴力弹栈, 查询时就在凸包上二分/ ...

  4. ●BZOJ 3672 [Noi2014]购票

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3672 题解: 斜率优化DP,点分治(树上CDQ分治...) 这里有一个没有距离限制的简单版: ...

  5. BZOJ 3672 [Noi2014]购票 (熟练剖分+凸壳维护)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3672 题意:给出一棵有根树(1为根),边有长度.每个点u有三个属性(len[u], ...

  6. BZOJ 3672 [NOI2014]购票 (凸优化+树剖/树分治)

    题目大意: 略 题面传送门 怎么看也是一道$duliu$题= = 先推式子,设$dp[x]$表示到达$x$点到达1节点的最小花费 设$y$是$x$的一个祖先,则$dp[x]=min(dp[y]+(di ...

  7. BZOJ 3672: [Noi2014]购票 树上CDQ分治

    做这道题真的是涨姿势了,一般的CDQ分治都是在序列上进行的,这次是把CDQ分治放树上跑了~ 考虑一半的 CDQ 分治怎么进行: 递归处理左区间,处理左区间对右区间的影响,然后再递归处理右区间. 所以, ...

  8. 【BZOJ 3672】 3672: [Noi2014]购票 (CDQ分治+点分治+斜率优化)**

    3672: [Noi2014]购票 Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国 ...

  9. bzoj千题计划251:bzoj3672: [Noi2014]购票

    http://www.lydsy.com/JudgeOnline/problem.php?id=3672 法一:线段树维护可持久化单调队列维护凸包 斜率优化DP 设dp[i] 表示i号点到根节点的最少 ...

随机推荐

  1. C语言第五次博客作业

    一.PTA实验作业 题目1:6-6 使用函数输出水仙花数 1. 本题PTA提交列表 2. 设计思路 (1) 首先先定义narcissistic函数. (2)定义四个整形变量n,a,d,cnt,sum, ...

  2. 1013团队Beta冲刺日志集合帖

    Beta预备 Beta冲刺day1 Beta冲刺day2 Beta冲刺day3 Beta冲刺day4 Beta冲刺day5 Beta冲刺day6 Beta冲刺day7 用户使用调查报告 Beta冲刺总 ...

  3. 学号:201621123032 《Java程序设计》第9周学习总结(

    1:本周学习总结 1.1:以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容 2:书面作业 2.1: List中指定元素的删除(题集题目) 2.1.1:实验总结.并回答:列举至少2种在List ...

  4. Struts2之配置

    Struts2的默认配置文件是struts.xml放在/web-inf/classes目录下,struts配置文件的最大作用就是配置Action与请求之间的对应关系,并配置逻辑视图名和物理视图名之间的 ...

  5. maven(二)创建工程

    创建动态Web工程打war包 ​ File→new→Maven Project→勾上create a simple project→然后next> ​ 然后会报一下的错 ​ 解决 ​ 创建jav ...

  6. wireshark抓包分析tcp连接与断开

    其实对于网络通信的学习,最好还是能够自己抓到包详细地一下,不然只单单通过文字和图的描述印象不够深刻.本文通过实际的抓包操作来看一下tcp的连接与断开是怎样的. 首先需要去https://www.wir ...

  7. Faster R-CNN 的 RPN 是啥子?

     Faster R-CNN,由两个模块组成: 第一个模块是深度全卷积网络 RPN,用于 region proposal; 第二个模块是Fast R-CNN检测器,它使用了RPN产生的region p ...

  8. python time、datetime、random、os、sys模块

    一.模块1.定义模块:用来从逻辑上组织Python代码(变量,函数,类,逻辑:实现一个功能),本质就是.py结尾的python文件(文件名:test.py,对应的模块名:test)包:用来从逻辑上组织 ...

  9. 深度学习之 mnist 手写数字识别

    深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...

  10. 使用 HttpClient 请求 Web Api

    1.获取 post 请求 body 内容 [HttpPost] public string GetId() { //如果方法参数里面有 [FromBody],则需要重新调整内容指针,再进行读取. // ...