二分图最大点权独立集

通过题目描述我们可以很明显的看出要通过二分图建模,二分图求最大独立点集很容易,就是建立二分图求n-最小割,然而这里加入了权值,而且权值是在点上的,那么我们对于每个点连一条到源点或汇点的容量等于权值的边,求最小割即可,见胡伯涛论文

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN=25000,MAXM=500005;
int s,t,head[MAXN],cur[MAXN],n,m,maxflow,tot,nume,dep[MAXN],ma[105][105],dx[4]={-1,1,0,0},dy[4]={0,0,1,-1};
queue<int >q;
struct edge{
int to,nxt,flow,cap;
}e[MAXM];
void adde(int from,int to,int cap){
e[++nume].to=to;
e[nume].cap=cap;
e[nume].nxt=head[from];
head[from]=nume;
}
bool bfs(){
memset(dep,0,sizeof(dep));
q.push(s);dep[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(!dep[v]&&e[i].flow<e[i].cap){
dep[v]=dep[u]+1;
q.push(v);
}
}
}
return dep[t];
}
int dfs(int u,int flow){
if(u==t) return flow;
int tot=0;
for(int i=head[u];i&&tot<flow;i=e[i].nxt){
int v=e[i].to;
if(dep[v]==dep[u]+1&&e[i].flow<e[i].cap){
if(int t=dfs(v,min(flow-tot,e[i].cap-e[i].flow))){
e[i].flow+=t;
e[((i-1)^1)+1].flow-=t;
tot+=t;
}
}
}
return tot;
}
void dinic(){
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=head[i];
maxflow+=dfs(s,0x3f3f3f3f);
//cout<<1<<endl;
}
}
int main(){
cin>>m>>n;
s=0;t=m*n+1; for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
scanf("%d",&ma[i][j]);
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if((i+j)&1){
for(int k=0;k<4;k++){
int x=i+dx[k],y=j+dy[k];
if(ma[x][y]){
// cout<<i*n+j-n<<' '<<x*n+y-n<<endl;
adde(i*n+j-n,x*n+y-n,0x3f3f3f3f);
adde(x*n+y-n,i*n+j-n,0);
}
}
adde(s,i*n+j-n,ma[i][j]);adde(i*n+j-n,s,0);
}else adde(i*n+j-n,t,ma[i][j]),adde(t,i*n+j-n,0);
tot+=ma[i][j];
}
}
//for(int i=head[1];i;i=e[i].nxt) cout<<e[i].to<<endl;
dinic(); cout<<tot-maxflow<<endl;
return 0;
}

洛谷 [P2774] 方格取数问题的更多相关文章

  1. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  2. 洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割

    https://www.luogu.org/problemnew/show/P2774 把两个相邻的节点连边,这些边就是要方便最小割割断其他边存在的,容量无穷. 这种类似的问题的话,把二分图的一部分( ...

  3. [洛谷P2774]方格取数问题

    题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大 题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权 ...

  4. 洛谷P2774 方格取数问题(最小割)

    传送门 考虑一下,答案就是全局和减去舍弃和 不难发现,如果我们按行数+列数的奇偶性分为两类,那么每一类中的数必然互不相邻 那么我们把原图的点分为黑点和白点两类,原地向白点连边,黑点向汇点连边,容量为点 ...

  5. 洛谷P2774 方格取数问题(最小割)

    题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...

  6. 洛谷 P2774 方格取数问题【最小割】

    因为都是正整数,所以当然取得越多越好.先把所有点权加起来,黑白染色后,s向所有黑点连流量为点权的边,所有白点向t连流量为点权的边,然后黑点向相邻的四个白点连流量为inf的边,表示不可割,这样一来,对于 ...

  7. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  8. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  9. 洛谷 P1004 方格取数 【多进程dp】

    题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...

随机推荐

  1. 关于win10系统安装VMware12Pro后,win10系统的 控制面板\网络和 Internet\网络连接\更改适配器选项卡中 没有虚拟网卡VMnet1和VMnet8图标,该如何把他们显示出来呢?

    安装VMware12Pro后,PC主机通过命令行:ipconfig/all ,查看发现没有VMnet1和VMnet8. 然后我首先尝试打开VMware12Pro的虚拟网络编辑器: 然后先点击" ...

  2. WPF 实现新手指引功能 DEMO

    需求 1.接口化.其他人实现接口就行 2.动态定位到visualTree中任意控件位置,即随意只显示任何部位 3.指示文本控件和箭头控件随意更改(位置,大小,高度,偏移等基本属性) 4.抽出主题 [d ...

  3. 织梦DedeCMS v5.7 实现导航条下拉菜单

    首先将下面这段代码贴到templets\default\footer.htm文件里(只要在此文件里就行,位置无所谓) <</span>script type='text/javasc ...

  4. 这个时间格式2017-09-26-T04:00:00Z php识别不出来

    这应该不对吧 这是什么格式?看起来不标准,一般不都是传 2017-09-26 04:00:00 这种吗?不行用正则筛吧.echo date('Y-m-d H:i:s',date_create_from ...

  5. Apache日志分析_shell命令行

    说明: 1.我的日志预先设定好按日生成文件:"CustomLog "|/opt/apache/bin/rotatelogs /opt/apache/logs/www.website ...

  6. 邓_ Php·魔术方法

    ================================================ 1.__tostring()   用于定义输出对象引用时调用  常用于打印一些对象的信息 必须有返回值 ...

  7. vue 开发2017年变化回顾及2018年展望

    vue.js 变化 从 github 的发布记录我们可以看到2017年 vue.js 的第一个发布为 v2.1.9,最后一个为 v2.5.13,主要发布小版本 2.2~2.5.这些发布提升了vue 与 ...

  8. 深入剖析Java编程中的中文问题及建议最优解决方法

    摘录自:http://fafeng.blogbus.com/logs/3062998.html http://www.blogbus.com/fafeng-logs/3063006.html 深入剖析 ...

  9. 黑窗口输入确定数字弹MessageBox(VirtualProtect())

    今天有人说到这个就想的弹一下,刚开始弄了一下,发现内存访问有问题想到可能与读写保护有关,所以用了VirtualProtect函数,得到了正确结果 网上这个小东西我自己没发现,就贴一下.. void m ...

  10. 开始学习 Backbone

    [转]开始学习 Backbone 如何将模型-视图-控制器 (MVC) 架构引入 Ajax Web 应用程序 如何高效管理 Web 应用程序中的数目众多的 JavaScript 代码行是一个挑战.As ...