题解

Description

永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。

Input

第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。

接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。

对于 20%的数据 n≤1000,q≤1000

对于 100%的数据 n≤100000,m≤n,q≤300000

Output

对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。

Sample Input

5 1

4 3 2 5 1

1 2

7

Q 3 2

Q 2 1

B 2 3

B 1 5

Q 2 1

Q 2 4

Q 2 3

Sample Output

-1

2

5

1

2

题解

首先对于连通性,很显然维护一个并查集来考虑。

那么,现在的问题在于如何查询联通块第k大

这个玩意显然是个动态区间,而且大小还会变化,所以考虑使用平衡树维护。

那么,构建N棵splay,每次联通两个不连通的块的时候,直接启发式合并暴力合并,每个点最多被合并logn次,因此复杂度是正确的。

如果两个点已经属于同一个联通块,那么不需要再次合并,可以直接忽略操作。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
#define MAX 500000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Node
{
int ch[2];
int val,ff,size;
}t[MAX];
int f[MAX];
int root[MAX],tot;
int hh[MAX];
int N,M;
int getf(int x)
{
return x==f[x]?x:f[x]=getf(f[x]);
}
inline void pushup(int x)
{
t[x].size=t[t[x].ch[0]].size+t[t[x].ch[1]].size+1;
}
//1..N分别为N棵splay的0节点
//每次都对splay进行合并
inline void rotate(int x)
{
int y=t[x].ff;
int z=t[y].ff;
int k=t[y].ch[1]==x;
t[z].ch[t[z].ch[1]==y]=x;t[x].ff=z;
t[y].ch[k]=t[x].ch[k^1];t[t[x].ch[k^1]].ff=y;
t[x].ch[k^1]=y;t[y].ff=x;
pushup(y);pushup(x);
}
inline void splay(int x,int goal)
{
while(t[x].ff!=goal)
{
int y=t[x].ff,z=t[y].ff;
if(z!=goal)
(t[z].ch[0]==y)^(t[y].ch[0]==x)?rotate(x):rotate(y);
rotate(x);
}
if(goal<=N)root[goal]=x;//如果是某一个0节点的下方,则更新当前splay的根节点
}
inline void insert(int x,int bh)
{
int u=root[bh],ff=bh;
while(u&&t[u].val!=x)
ff=u,u=t[u].ch[x>t[u].val];
u=++tot;
t[u].size=1;
t[u].ff=ff;
if(ff>N)
t[ff].ch[x>t[ff].val]=u;
t[u].val=x;t[u].ch[0]=t[u].ch[1]=0;
splay(u,bh);
}
void DFS(int u,int kk)//遍历整颗splay
{
if(t[u].ch[0])DFS(t[u].ch[0],kk);
if(t[u].ch[1])DFS(t[u].ch[1],kk);
insert(t[u].val,kk);//合并到另外一颗splay中
}
inline void Merge(int a,int b)
{
int x=getf(a),y=getf(b);
if(x==y)return;//已经在一个集合内
if(t[root[x]].size>t[root[y]].size)swap(x,y);//强制将小的合并到大的
f[x]=y;
DFS(root[x],y);
}
int kth(int bh,int k)
{
int u=root[bh];
if(t[u].size<k)return -1;
while(233)
{
if(t[t[u].ch[0]].size+1<k)//在右子树中找
{
k-=t[t[u].ch[0]].size+1;
u=t[u].ch[1];
}
else
if(t[t[u].ch[0]].size>=k)//在左子树中找
u=t[u].ch[0];
else
return t[u].val;//当前节点
}
}
int main()
{
N=read();M=read();
for(int i=1;i<=N;++i)root[i]=i+N,f[i]=i;
tot=N+N;
for(int i=1;i<=N;++i)
{
int x=read();
hh[x]=i;
t[i+N].val=x;t[i+N].size=1;t[i+N].ff=i;
}
for(int i=1;i<=M;++i)
{
int x=read(),y=read();
Merge(x,y);
}
int Q=read();
while(Q--)
{
char ch[3];int a,b;
scanf("%s",ch);a=read(),b=read();
if(ch[0]=='B')
{
Merge(a,b);
}
else
{
int ans=kth(getf(a),b);
printf("%d\n",ans==-1?ans:hh[ans]);
}
}
return 0;
}

【HNOI2012】永无乡(splay,启发式合并)的更多相关文章

  1. BZOJ 2733: [HNOI2012]永无乡 [splay启发式合并]

    2733: [HNOI2012]永无乡 题意:加边,询问一个连通块中k小值 终于写了一下splay启发式合并 本题直接splay上一个节点对应图上一个点就可以了 并查集维护连通性 合并的时候,把siz ...

  2. [BZOJ2733] [HNOI2012] 永无乡 (splay启发式合并)

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

  3. 洛谷.3224.[HNOI2012]永无乡(Splay启发式合并)

    题目链接 查找排名为k的数用平衡树 合并时用启发式合并,把size小的树上的所有节点插入到size大的树中,每个节点最多需要O(logn)时间 并查集维护连通关系即可 O(nlogn*insert t ...

  4. 【洛谷3224/BZOJ2733】[HNOI2012]永无乡 (Splay启发式合并)

    题目: 洛谷3224 分析: 这题一看\(n\leq100000\)的范围就知道可以暴力地用\(O(nlogn)\)数据结构乱搞啊-- 每个联通块建一棵Splay树,查询就是Splay查询第k大的模板 ...

  5. 【BZOJ-2733】永无乡 Splay+启发式合并

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2048  Solved: 1078[Submit][Statu ...

  6. BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)

    不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...

  7. 【bzoj2733】[HNOI2012]永无乡 Treap启发式合并

    题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...

  8. 【BZOJ2733】[HNOI2012] 永无乡(启发式合并Splay)

    点此看题面 大致题意: 给你一张图,其中每个点有一个权值,有两种操作:在两点之间连一条边,询问一个点所在联通块第\(k\)小的权值. 平衡树 看到第\(k\)小,应该不难想到平衡树. 为了练习\(Sp ...

  9. 【BZOJ 2733】【HNOI 2012】永无乡 Splay启发式合并

    启发式合并而已啦,, 调试时发现的错误点:insert后没有splay,把要拆开的树的点插入另一个树时没有把ch[2]和fa设为null,找第k大时没有先减k,,, 都是常犯的错误,比赛时再这么粗心就 ...

  10. BZOJ 2733 [HNOI2012]永无乡(启发式合并+Treap+并查集)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2733 [题目大意] 给出n个点,每个点都有自己的重要度,现在有连边操作和查询操作, 查 ...

随机推荐

  1. Centos启动默认打开网络

    Centos打开网络 测试的时候发现网络没有打开,得到图像界面点击网络打开.比较麻烦去搜索了解决方法在此记录下来. 通过 /etc/sysconfig/network-script/, 编辑ifcfg ...

  2. hiveql函数笔记(二)

    1.数据查询 //提高聚合的性能 SET hive.map.aggr=true; SELECT count(*),avg(salary) FROM employees; //木匾不允许在一个查询语句中 ...

  3. 配置python虚拟环境Virtualenv及pyenv

    pyenv pyenv 可以让机器安装各种不同版本的python pyenv install --list 查看可以安装的python版本 pyenv versions 查看已安装的python版本 ...

  4. 使用VIM将文件的其中的连续几行注释删除或者给其中的连续几行添加注释

    一.使用VIM将文件的其中的连续几行注释删除 1.用VIM打开一个文件,比如打开sshd_config文件,以该文件的下面几行为例: #vim  sshd_config 2.此时,按ctrl+v键,使 ...

  5. 有关datatables的非常规教程

    有关datatables的非常规教程 1. //$.fn.dataTable.tables({ visible: true, api: true }).columns.adjust(); table. ...

  6. maven排除jar包冲突

    首先查看mvn中冲突的包 使用命令:mvn dependency:tree -Dverbose | grep "omitted for conflict with" windows ...

  7. 使用Netbeans内置的Git工具

    在 NetBeans IDE 中使用 Git 支持 NetBeans IDE 为 Git 版本控制客户端提供支持.通过利用 IDE 的 Git 支持,您可以从 IDE 内的项目中直接执行版本控制任务. ...

  8. MysqL_SELECT FOR UPDATE详解

    先来举一个在某些应用场景下会出现数据不一致的例子,当然存储引擎是InnoDB(至于为什么,后面再告诉你). 电商平台常见的下单场景: 一般商品表(goods)有基本的四个字段,id(主键),goods ...

  9. python+flask:实现POST接口功能

    1.首先需要安装python和flask,这个是必须的嘛. 2.我们这里实现的是一个POST功能的简单接口. from flask import Flask, request, jsonify imp ...

  10. enable multi-tenancy on openstack pike

    Multi-tenancy 是openstack ironic从Ocata版本开始支持的新特性,通过network-generic-switch插件控制交换机,Ironic可以实现在不同租户间机网络隔 ...