P4091-[HEOI2016/TJOI2016]求和【斯特林数,NTT】
正题
题目链接:https://www.luogu.com.cn/problem/P4091
题目大意
给出\(n\),求
\]
解题思路
看题解才知道\(2^jj!\)对这\(n\log n\)做法没有任何意义,卡了好久。
首先斯特林数的通项公式是
\]
\]
提到这个式子来(因为如果\(j>i\)就是\(0\)所以直接不管这个限制)
\]
然后把枚举\(i\)的那层丢到分数那里
\]
然后这个后面式子就可以卷积了,定义\(F(x)=\frac{(-1)^x}{x!},G(x)=\frac{\sum_{i=0}^nx^n}{x!}\)
然后\(G\)通项公式一下就是\(G(x)=\frac{x^{n+1}-1}{(x-1)x!}\)
时间复杂度\(O(n\log n)\)
\(code\)
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=6e5+10,P=998244353;
struct poly{
ll a[N],n;
}G,F;
ll n,ans,fac[N],inv[N],fnv[N],r[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(r[i]<i)swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=p>>1,tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=buf*f[i+len]%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
void mul(poly &a,poly &b){
ll n=1;
while(n<=a.n+b.n)n<<=1;
for(ll i=0;i<n;i++)
r[i]=(r[i>>1]>>1)^((i&1)?(n>>1):0);
NTT(a.a,n,1);NTT(b.a,n,1);
for(ll i=0;i<n;i++)
a.a[i]=a.a[i]*b.a[i]%P;
NTT(a.a,n,-1);return;
}
int main()
{
scanf("%lld",&n);
fac[1]=fac[0]=fnv[0]=inv[1]=1;
for(ll i=2;i<=n;i++)
inv[i]=P-(P/i)*inv[P%i]%P;
for(ll i=1;i<=n;i++)
fac[i]=fac[i-1]*i%P,
fnv[i]=inv[i]*fnv[i-1]%P;
F.a[0]=G.a[0]=1;F.a[1]=P-1;G.a[1]=n+1;fnv[0]=0;
for(ll i=2;i<=n;i++){
F.a[i]=(i&1)?(P-fnv[i]):fnv[i];
G.a[i]=(power(i,n+1)-1)*inv[i-1]%P*fnv[i]%P;
}
G.n=F.n=n;mul(G,F);
for(ll i=0,pw=1;i<=n;i++){
(ans+=G.a[i]*pw%P*fac[i]%P)%=P;
pw=pw*2%P;
}
printf("%lld\n",ans);
return 0;
}
P4091-[HEOI2016/TJOI2016]求和【斯特林数,NTT】的更多相关文章
- 洛谷 P4091 [HEOI2016/TJOI2016]求和 解题报告
P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\ ...
- 【题解】P4091 [HEOI2016/TJOI2016]求和
[题解]P4091 [HEOI2016/TJOI2016]求和 [P4091 HEOI2016/TJOI2016]求和 可以知道\(i,j\)从\(0\)开始是可以的,因为这个时候等于\(0\).这种 ...
- P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)
传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...
- [HEOI2016/TJOI2016][bzoj4555] 求和 [斯特林数+NTT]
题面 传送门 思路 首先,我们发现这个式子中大部分的项都和$j$有关(尤其是后面的$2^j\ast j!$),所以我们更换一下枚举方式,把这道题的枚举方式变成先$j$再$i$ $f(n)=\sum_{ ...
- 【BZOJ4555】[TJOI&HEOI2016]求和 斯特林数+NTT
Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i ...
- P4091 [HEOI2016/TJOI2016]求和
留待警戒 FFT的时候长度要写的和函数里一样啊XD 瞎扯 这是个第二类斯特林数的理性愉悦颓柿子题目 颓柿子真的是让我hi到不行啦(才没有) 前置芝士 一个公式 \[ \sum_{i=0}^n t^i ...
- [洛谷P4091][HEOI2016/TJOI2016]求和
题目大意:给你$n(n\leqslant10^5)$,求:$$\sum\limits_{i=0}^n\sum\limits_{j=0}^i\begin{Bmatrix}i\\j\end{Bmatrix ...
- BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)
题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...
- 【题解】Luogu P4091 [HEOI2016/TJOI2016]求和
原题传送门 \[\begin{aligned} a n s &=\sum_{i=0}^{n} \sum_{j=0}^{i}\left\{\begin{array}{c}{i} \\ {j}\e ...
- luogu P4091 [HEOI2016/TJOI2016]求和
传送门 这一类题都要考虑推式子 首先,原式为\[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)*2^j*j!\] 可以看成\[f(n)=\sum_{j=0}^{n}2^ ...
随机推荐
- jenkins+docker部署java项目
jenkins + maven + jdk + docker + docker register + dockerfile jenkins插件 # 安装插件 SSH # 配置 系统设置-> SS ...
- Failed to set locale, defaulting to C.UTF-8
CentOS 8中执行命令,出现报错:Failed to set locale, defaulting to C.UTF-8 报错原因: 1.没有安装相应的语言包. 2.没有设置正确的语言环境. 解决 ...
- 个人笔记-----Vue中多个router-view应用
单个 <router-view/> 和多个 <router-view/> 的区别,单个 <router-view/> 只是一个区域的变化,不需要设置name属性,在 ...
- Qt Model/View(模型/视图)结构(无师自通)
Model/View(模型/视图)结构是 Qt 中用界面组件显示与编辑数据的一种结构,视图(View)是显示和编辑数据的界面组件,模型(Model)是视图与原始数据之间的接口. GUI 应用程序的一个 ...
- linux centos7安装部署gitlab服务器
refer:https://www.globo.tech/learning-center/install-gitlab-centos-7/#:~:text=How%20to%20Install%20G ...
- kettle 查询 tinyint 值为 Y,kettle 查询 tinyint 为布尔值
问题解决方法 1.在数据库连接中的[选项]命令参数中加入:tinyInt1isBit = false,如下图: 实际场景:
- 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建一个版本
我们可以使用官方 sentry-cli 工具操作 Sentry API,从而来为你的项目管理一些数据.它主要用于管理 iOS.Android 的调试信息文件,以及其他平台的版本(release)和源代 ...
- MySQL-SQL基础-DCL
mysql> grant select,insert on sakila.* to 'zl'@'localhost' identified by '123'; Query OK, 0 rows ...
- group by分组查询
有如下数据: 一个简单的分组查询的案例 按照部门编号deptno分组,统计每个部门的平均工资. select deptno,avg(sal) avgs from emp group by deptno ...
- 【进阶之路】持续集成、持续交付与持续部署(CI/CD)
由来 记得7月份刚刚换工作的时候,中午和老大一起去吃饭,回来的路上老大问我:"南橘,CI/CD有没有研究过?" 我隐隐约约在哪里听过这个名词,但是又想不起来,秉着实事求是的态度,我 ...