CF700E-Cool Slogans【SAM,线段树合并,dp】
正题
题目链接:https://www.luogu.com.cn/problem/CF700E
题目大意
给出一个字符串\(S\),求一个最大的\(k\)使得存在\(k\)个字符串其中\(s_1\)是\(S\)的子串,\(s_{i+1}\)在\(s_i\)中出现了至少\(2\)次。
解题思路
首先我们需要有两个结论
- \(s_{i+1}\)一定是\(s_i\)的其中一个后缀。因为如果\(s_{i+1}\)不是\(s_i\)的一个后缀,那么\(s_i\)去掉后面那一部分不会影响匹配数并且更短,也就是更优
- 对于\(parents\)树上的一对父子\(x,y\),\(y\)代表的所以字符串与\(x\)最长串的匹配数均相等。因为如果有不等的,那么证明\(y\)中的字符串的出现\(endpos\)集合不同,不符合\(\text{SAM}\)的定义,故不成立。
这样我们就可以在\(\text{SAM}\)上进行\(dp\)了,因为第一个结论我们可以直接在\(fail\)树上\(dp\),然后第二个结论让我们能够使用每个节点最长的串来进行匹配,因为这不会影响答案。
现在我们需要考虑如何判断一个节点的串是否在另一个它的祖先节点的串中出现了两次,首先作为后缀已经出现了一次,然后只需要判断是否包含一个出现在\([pos_x-len_x+len_y,pos_x-1]\)的串就好了,因为\(endpos\)在这个范围内出现的串一定是与字符串\(x\)相同的。
用线段树合并维护每个节点包含的串的位置就好了,还有就是要从上往下转移。
时间复杂度\(O(n\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=4e5+10,M=N<<6;
int n,cnt,last,ans,c[N],p[N],f[N],top[N];
int rt[N],pos[N],len[N],fa[N],ch[N][26];
char s[N];
struct Seq_Tree{
int w[M],ls[M],rs[M],cnt;
int Change(int x,int L,int R,int pos){
int y=++cnt;w[y]=w[x]+1;
if(L==R)return y;
int mid=(L+R)>>1;
if(pos<=mid)ls[y]=Change(ls[x],L,mid,pos),rs[y]=rs[x];
else ls[y]=ls[x],rs[y]=Change(rs[x],mid+1,R,pos);
return y;
}
int Merge(int x,int y,int L,int R){
if(!x||!y)return x|y;
int p=++cnt;w[p]=w[x]+w[y];
if(L==R)return p;
int mid=(L+R)>>1;
ls[p]=Merge(ls[x],ls[y],L,mid);
rs[p]=Merge(rs[x],rs[y],mid+1,R);
w[p]=w[ls[p]]+w[rs[p]];
return p;
}
int Ask(int x,int L,int R,int l,int r){
if(!x)return 0;
if(L==l&&R==r)return w[x];
int mid=(L+R)>>1;
if(r<=mid)return Ask(ls[x],L,mid,l,r);
if(l>mid)return Ask(rs[x],mid+1,R,l,r);
return Ask(ls[x],L,mid,l,mid)+Ask(rs[x],mid+1,R,mid+1,r);
}
}T;
void Insert(int c){
int p=last,np=last=++cnt;
len[np]=len[p]+1;
for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
if(!p)fa[np]=1;
else{
int q=ch[p][c];
if(len[p]+1==len[q])fa[np]=q;
else{
int nq=++cnt;len[nq]=len[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
fa[nq]=fa[q];pos[nq]=pos[q];fa[q]=fa[np]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}
return;
}
int main()
{
scanf("%d",&n);cnt=last=1;
scanf("%s",s+1);
for(int i=1;i<=n;i++)
Insert(s[i]-'a'),rt[last]=T.Change(rt[last],1,n,i),pos[last]=i;
for(int i=1;i<=cnt;i++)c[len[i]]++;
for(int i=1;i<=n;i++)c[i]+=c[i-1];
for(int i=1;i<=cnt;i++)p[c[len[i]]--]=i;
for(int i=cnt;i>1;i--)
rt[fa[p[i]]]=T.Merge(rt[fa[p[i]]],rt[p[i]],1,n);
int ans=1;
for(int i=2;i<=cnt;i++){
int x=p[i],y=fa[x];
if(y==1){f[x]=1;top[x]=x;continue;}
y=top[y];
if(T.Ask(rt[y],1,n,pos[x]-len[x]+len[y],pos[x]-1))
f[x]=f[y]+1,top[x]=x;
else top[x]=y,f[x]=f[y];
ans=max(ans,f[x]);
}
printf("%d\n",ans);
return 0;
}
CF700E-Cool Slogans【SAM,线段树合并,dp】的更多相关文章
- CF700E:Cool Slogans(SAM,线段树合并)
Description 给你一个字符串,如果一个串包含两个可有交集的相同子串,那么这个串的价值就是子串的价值+1.问你给定字符串的最大价值子串的价值. Input 第一行读入字符串长度$n$,第二行是 ...
- CF700E Cool Slogans——SAM+线段树合并
RemoteJudge 又是一道用线段树合并来维护\(endpos\)的题,还有一道见我的博客CF666E 思路 先把\(SAM\)建出来 如果两个相邻的串\(s_i\)和\(s_{i+1}\)要满足 ...
- Codeforces 700E. Cool Slogans 字符串,SAM,线段树合并,动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/CF700E.html 题解 首先建个SAM. 一个结论:对于parent树上任意一个点x,以及它所代表的子树内任 ...
- Codeforces.700E.Cool Slogans(后缀自动机 线段树合并 DP)
题目链接 \(Description\) 给定一个字符串\(s[1]\).一个字符串序列\(s[\ ]\)满足\(s[i]\)至少在\(s[i-1]\)中出现过两次(\(i\geq 2\)).求最大的 ...
- CF1037H Security——SAM+线段树合并
又是一道\(SAM\)维护\(endpos\)集合的题,我直接把CF700E的板子粘过来了QwQ 思路 如果我们有\([l,r]\)对应的\(SAM\),只需要在上面贪心就可以了.因为要求的是字典序比 ...
- 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree
原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...
- UOJ#395. 【NOI2018】你的名字 字符串,SAM,线段树合并
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ395.html 题解 记得同步赛的时候这题我爆0了,最暴力的暴力都没调出来. 首先我们看看 68 分怎么做 ...
- loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增
题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...
- 2019.02.27 bzoj4556: [Tjoi2016&Heoi2016]字符串(二分答案+sam+线段树合并)
传送门 题意:给一个字符串SSS. 有mmm次询问,每次给四个参数a,b,c,da,b,c,da,b,c,d,问s[a...b]s[a...b]s[a...b]的所有子串和s[x...y]s[x... ...
随机推荐
- null的坑 和 比较运算符、相等运算符的隐式转换问题 (在javascript中,null>=0 为真,null<=0 为真,null==0却为假,null到底是什么?)
null在关系运算中的坑 & 关系运算符的隐式转换问题 注意: 比较运算符 和 相等运算符 的 ECMAscript 语法实现不同. 比较运算符 和 相等运算符 对数据进行了隐式转换, 相当于 ...
- ASP.NET Core教程:使用Supervisor做ASP.NET Core应用程序守护进程
一.前言 在上一篇文章中,我们讲解了如何在Linux服务器上面部署ASP.NET Core应用程序,并且使用Nginx作为反向代理.我们在Linux服务器上面,是通过ASP.NET Core自宿主的方 ...
- Spring详解(十)加载配置文件
在项目中有些参数经常需要修改,或者后期可能会有改动时,那我们最好把这些参数放到properties文件中,在源代码中读取properties里面的配置,这样后期只需要改动properties文件即可, ...
- 虚拟机--第一章走进java--(抄书)
这是本人阅读周志明老师的<深入理解Java虚拟机>第二版抄写的,有很多省略,不适合直接阅读,需要阅读请出门左转淘宝,右转京东,支持周老师(侵权请联系删除) 第一章走近java 世界上并没有 ...
- The Second Week lucklyzpp
The Second Week 文件通配符模式 在Linux系统中预定义的字符类 1.显示/etc目录下,以非字母开头,后面跟了一个字母以及其它任意长度任意字符的文件或目录 2.复制/etc目录下 ...
- MFC中L, _T(),TEXT,_TEXT区别以及含义
字符串前面加L表示该字符串是Unicode字符串. _T是一个宏,如果项目使用了Unicode字符集(定义了UNICODE宏),则自动在字符串前面加上L,否则字符串不变.因此,Visual C++里边 ...
- 如何实现LRU缓存
大家好,我是程序员学长,今天我们来聊一聊LRU缓存问题. Tips: LRU在计算机软件中无处不在,希望大家一定要了解透彻. 问题描述 设计LRU(最近最少使用)缓存结构,该结构在构造时确定大小,假设 ...
- Python入门学习之:10分钟1500访问量
看效果: 不扯没用的,直接上代码: # author : sunzd # date : 2019/9/01 # position : beijing from fake_useragent impor ...
- 数据结构(c++)(第二版) Dijkstra最短路径算法 教学示范代码出现重大问题!
前言 去年在数据结构(c++)的Dijkstra教学算法案例中,发现了一个 bug 导致算法不能正常的运行,出错代码只是4行的for循环迭代代码. 看到那里就觉得有问题,但书中只给了关键代码的部分,其 ...
- 使用Redis Stream来做消息队列和在Asp.Net Core中的实现
写在前面 我一直以来使用redis的时候,很多低烈度需求(并发要求不是很高)需要用到消息队列的时候,在项目本身已经使用了Redis的情况下都想直接用Redis来做消息队列,而不想引入新的服务,kafk ...