Codeforces 407E - k-d-sequence(单调栈+扫描线+线段树)
深感自己线段树学得不扎实……
首先特判掉 \(d=0\) 的情况,显然这种情况下满足条件的区间 \([l,r]\) 中的数必须相同,双针扫一遍即可。
接下来考虑如何解决 \(d\ne 0\) 的情况。碰到这样的问题我们肯定首先要把区间合法的充要条件一一罗列出来,不难发现由于我们的过程只有加数,没有删数,因此原序列中两两数之差也必须是 \(d\) 的倍数,也即区间中所有数模 \(d\) 同余,又显然区间中两两数必须互不相同,因此我们考虑令 \(b_i=\lfloor\dfrac{a_i}{d}\rfloor,c_i=a_i\bmod d\),那么前面两个条件即可翻译为:
- \(\forall i\in[l,r],c_i=c_l\)
- \(b_l,b_{l+1},b_{l+2},\cdots,b_r\) 互不相同
接下来考虑最多加入 \(k\) 个数这个条件。显然经过我们这么一转化,最终形成的序列的 \(b\) 值必须形成公差恰好为 \(1\) 的等差数列。而如果我们记 \(L=\min\limits_{i=l}^rb_i,R=\max\limits_{i=l}^rb_i\),那么我们肯定不会加入 \(b\) 值在 \([L,R]\) 以外的数,因此我们加入数的个数的最小值就是 \((R-L+1)-(r-l+1)=(R-L)-(r-l)\),因此我们还可以得到条件:
- \((R-L)-(r-l)\le k\)
考虑怎么维护这个东西,这东西显然不好分治对吧,那我们就扫描线求解,枚举右端点,维护可行的左端点的集合。假设右端点扫描到 \(r\),那么显然满足前两个条件的 \(l\) 肯定会形成一段区间 \([L_l,R_l]\),且显然有 \(R_l=r\)。那么对于第一个条件,如果我们扫描到某个 \(r\) 满足 \(c_r\ne c_{r-1}\),就令 \(L_l=r\),对于第二个条件,我们在扫描的过程中维护 \(pre_i\) 表示上一个 \(b_j=i\) 的位置,然后每扫到一个 \(r\) 就令 \(L_l\) 对 \(pre_{b_r}+1\) 取 \(\max\) 即可。比较棘手的是第三个条件,不过这东西是可以单调栈+线段树维护的,具体维护方法参加 CF997E,因此考虑单调栈维护一波这个东西,这样我们要求的就是 \([L_l,R_l]\) 中第一个 \(\le k\) 的位置,这显然可以线段树二分在 \(\log n\) 的时间内求出(而我甚至 \(\log^2n\) 的做法都没想到,说明 5448),总复杂度 \(n\log n\)。
const int MAXN=2e5;
int n,k,d,a[MAXN+5],b[MAXN+5],c[MAXN+5];
map<int,int> pre;
int getmod(int x,int v){return (x%v+v)%v;}
int getdiv(int x,int v){return (x-getmod(x,v))/v;}
struct node{int l,r,mn,lz;} s[MAXN*4+5];
void pushup(int k){s[k].mn=min(s[k<<1].mn,s[k<<1|1].mn);}
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;if(l==r) return;int mid=l+r>>1;
build(k<<1,l,mid);build(k<<1|1,mid+1,r);
}
void tag(int x,int v){s[x].mn+=v;s[x].lz+=v;}
void pushdown(int k){if(s[k].lz) tag(k<<1,s[k].lz),tag(k<<1|1,s[k].lz),s[k].lz=0;}
void modify(int k,int l,int r,int v){
if(l<=s[k].l&&s[k].r<=r) return tag(k,v),void();
pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) modify(k<<1,l,r,v);else if(l>mid) modify(k<<1|1,l,r,v);
else modify(k<<1,l,mid,v),modify(k<<1|1,mid+1,r,v);
pushup(k);
}
int findleq(int k,int l,int r,int v){
if(s[k].mn>v) return -1;
if(l<=s[k].l&&s[k].r<=r){
if(s[k].l==s[k].r) return s[k].l;
pushdown(k);int ps,mid=s[k].l+s[k].r>>1;
if(~(ps=findleq(k<<1,l,mid,v))) return ps;
return findleq(k<<1|1,mid+1,r,v);
} pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) return findleq(k<<1,l,r,v);
else if(l>mid) return findleq(k<<1|1,l,r,v);
else{
int ps;
if(~(ps=findleq(k<<1,l,mid,v))) return ps;
return findleq(k<<1|1,mid+1,r,v);
}
}
int main(){
scanf("%d%d%d",&n,&k,&d);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
if(!d){
pii res=mp(0,0);
for(int l=1,r;l<=n;l++){
r=l;while(r<=n&&a[l]==a[r]) ++r;
chkmax(res,mp(r-l,-l));
} printf("%d %d\n",-res.se,-res.se+res.fi-1);
return 0;
} build(1,1,n);pii res;
for(int i=1;i<=n;i++) b[i]=getdiv(a[i],d),c[i]=getmod(a[i],d);
stack<int> stk_mn,stk_mx;stk_mn.push(0);stk_mx.push(0);
for(int i=1,mnl=1;i<=n;i++){//(mx-mn)-(r-l)<=k
if(c[i]!=c[i-1]) chkmax(mnl,i);
chkmax(mnl,pre[b[i]]+1);pre[b[i]]=i;
while(stk_mn.size()>1&&b[i]<b[stk_mn.top()]){
int p=stk_mn.top();stk_mn.pop();
modify(1,stk_mn.top()+1,p,b[p]-b[i]);
// printf("modify %d %d %d\n",stk_mn.top()+1,p,b[p]-b[i]);
} while(stk_mx.size()>1&&b[i]>b[stk_mx.top()]){
int p=stk_mx.top();stk_mx.pop();
modify(1,stk_mx.top()+1,p,-b[p]+b[i]);
// printf("modify %d %d %d\n",stk_mx.top()+1,p,-b[p]+b[i]);
} if(i^1) modify(1,1,i-1,-1)/*,printf("modify %d %d %d\n",1,i-1,-1)*/;
stk_mn.push(i);stk_mx.push(i);
int ps=findleq(1,mnl,i,k);
if(~ps) chkmax(res,mp(i-ps+1,-ps));
} printf("%d %d\n",-res.se,-res.se+res.fi-1);
return 0;
}
Codeforces 407E - k-d-sequence(单调栈+扫描线+线段树)的更多相关文章
- P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...
- 51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线
区间计数 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 80 两个数列 {An} , {Bn} ,请求出Ans, Ans定义如下: Ans:=Σni=1Σnj=i[max{ ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- 【XSY2720】区间第k小 整体二分 可持久化线段树
题目描述 给你你个序列,每次求区间第\(k\)小的数. 本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\). 强制在线. \(n\leq 100000,a_i<n ...
- HDU 3642 - Get The Treasury - [加强版扫描线+线段树]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- 【BZOJ3958】[WF2011]Mummy Madness 二分+扫描线+线段树
[BZOJ3958][WF2011]Mummy Madness Description 在2011年ACM-ICPC World Finals上的一次游览中,你碰到了一个埃及古墓. 不幸的是,你打开了 ...
- HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)
Description Ted has a new house with a huge window. In this big summer, Ted decides to decorate the ...
- 【bzoj4491】我也不知道题目名字是什么 离线扫描线+线段树
题目描述 给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串 输入 第一行n,表示A数组有多少元素接下来一行为n个整数A[i]接下来一个整数Q,表示询问数 ...
- hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积
题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...
随机推荐
- Java:Object对象小记
Java:Object对象小记 对 Java 中的 Object 对象,做一个微不足道的小小小小记 Object 的常用方法有哪些 clone() 方法:用于创建并返回当前对象的一份拷贝: 在Java ...
- Scrum Meeting 0507
零.说明 日期:2021-5-7 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 测试 测试 cyy ...
- [技术博客] 利用SharedPreferences来实现登录状态的记忆功能
[技术博客] 利用SharedPreferences来实现登录状态的记忆功能 一.SharedPreferences简介 SharedPreferences是Android平台上一个轻量级的存储辅助类 ...
- Django(71)图片处理器django-imagekit
介绍 ImageKit是用于处理图像的Django应用程序.如果需要从原图上生成一个长宽为50x50的图像,则需要ImageKit. ImageKit附带了一系列图像处理器,用于调整大小和裁剪等常见任 ...
- RGB-YUV
1,RGB 1.1 RGB说明 RGB色彩模式是工业界的一种颜色标准,是通过对红(R).绿(G).蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红.绿.蓝三个通 ...
- 编译内核错误:Can't use 'defined(@array)' (Maybe you should just omit the defined()?) at kernel/timeconst.pl line 373
最近在编译一个新的rk sdk的时候,编译内核报错 CHK include/linux/version.h CHK include/generated/utsrelease.h make[1]: 'i ...
- Python NameError: name 'unicode' is not defined
Python2 的unicode 函数在 Python3 中被命名为 str.在 Python3 中使用 ·str 来代替 Python2 中的 unicode.
- Java项目中集成钉钉机器人推送消息提醒
前言: 项目中有一个需求,当有新订单产生的时候,希望能够及时通知到业务相关人员进行处理,整体考虑了一下,选用了钉钉机器人提醒功能(公司内部主要也是使用钉钉进行通讯). 操作: 主要分为两部分进行处理: ...
- K8s 离线集群部署(二进制包无dashboard)
https://www.cnblogs.com/cocowool/p/install_k8s_offline.html https://www.jianshu.com/p/073577bdec98 h ...
- Navicat for MySQL 批量执行多个 SQL 文件
文件合并 type *.sql >> aaa.sql 执行sql文件 右键点击数据库