Codeforces 407E - k-d-sequence(单调栈+扫描线+线段树)
深感自己线段树学得不扎实……
首先特判掉 \(d=0\) 的情况,显然这种情况下满足条件的区间 \([l,r]\) 中的数必须相同,双针扫一遍即可。
接下来考虑如何解决 \(d\ne 0\) 的情况。碰到这样的问题我们肯定首先要把区间合法的充要条件一一罗列出来,不难发现由于我们的过程只有加数,没有删数,因此原序列中两两数之差也必须是 \(d\) 的倍数,也即区间中所有数模 \(d\) 同余,又显然区间中两两数必须互不相同,因此我们考虑令 \(b_i=\lfloor\dfrac{a_i}{d}\rfloor,c_i=a_i\bmod d\),那么前面两个条件即可翻译为:
- \(\forall i\in[l,r],c_i=c_l\)
- \(b_l,b_{l+1},b_{l+2},\cdots,b_r\) 互不相同
接下来考虑最多加入 \(k\) 个数这个条件。显然经过我们这么一转化,最终形成的序列的 \(b\) 值必须形成公差恰好为 \(1\) 的等差数列。而如果我们记 \(L=\min\limits_{i=l}^rb_i,R=\max\limits_{i=l}^rb_i\),那么我们肯定不会加入 \(b\) 值在 \([L,R]\) 以外的数,因此我们加入数的个数的最小值就是 \((R-L+1)-(r-l+1)=(R-L)-(r-l)\),因此我们还可以得到条件:
- \((R-L)-(r-l)\le k\)
考虑怎么维护这个东西,这东西显然不好分治对吧,那我们就扫描线求解,枚举右端点,维护可行的左端点的集合。假设右端点扫描到 \(r\),那么显然满足前两个条件的 \(l\) 肯定会形成一段区间 \([L_l,R_l]\),且显然有 \(R_l=r\)。那么对于第一个条件,如果我们扫描到某个 \(r\) 满足 \(c_r\ne c_{r-1}\),就令 \(L_l=r\),对于第二个条件,我们在扫描的过程中维护 \(pre_i\) 表示上一个 \(b_j=i\) 的位置,然后每扫到一个 \(r\) 就令 \(L_l\) 对 \(pre_{b_r}+1\) 取 \(\max\) 即可。比较棘手的是第三个条件,不过这东西是可以单调栈+线段树维护的,具体维护方法参加 CF997E,因此考虑单调栈维护一波这个东西,这样我们要求的就是 \([L_l,R_l]\) 中第一个 \(\le k\) 的位置,这显然可以线段树二分在 \(\log n\) 的时间内求出(而我甚至 \(\log^2n\) 的做法都没想到,说明 5448),总复杂度 \(n\log n\)。
const int MAXN=2e5;
int n,k,d,a[MAXN+5],b[MAXN+5],c[MAXN+5];
map<int,int> pre;
int getmod(int x,int v){return (x%v+v)%v;}
int getdiv(int x,int v){return (x-getmod(x,v))/v;}
struct node{int l,r,mn,lz;} s[MAXN*4+5];
void pushup(int k){s[k].mn=min(s[k<<1].mn,s[k<<1|1].mn);}
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;if(l==r) return;int mid=l+r>>1;
build(k<<1,l,mid);build(k<<1|1,mid+1,r);
}
void tag(int x,int v){s[x].mn+=v;s[x].lz+=v;}
void pushdown(int k){if(s[k].lz) tag(k<<1,s[k].lz),tag(k<<1|1,s[k].lz),s[k].lz=0;}
void modify(int k,int l,int r,int v){
if(l<=s[k].l&&s[k].r<=r) return tag(k,v),void();
pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) modify(k<<1,l,r,v);else if(l>mid) modify(k<<1|1,l,r,v);
else modify(k<<1,l,mid,v),modify(k<<1|1,mid+1,r,v);
pushup(k);
}
int findleq(int k,int l,int r,int v){
if(s[k].mn>v) return -1;
if(l<=s[k].l&&s[k].r<=r){
if(s[k].l==s[k].r) return s[k].l;
pushdown(k);int ps,mid=s[k].l+s[k].r>>1;
if(~(ps=findleq(k<<1,l,mid,v))) return ps;
return findleq(k<<1|1,mid+1,r,v);
} pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) return findleq(k<<1,l,r,v);
else if(l>mid) return findleq(k<<1|1,l,r,v);
else{
int ps;
if(~(ps=findleq(k<<1,l,mid,v))) return ps;
return findleq(k<<1|1,mid+1,r,v);
}
}
int main(){
scanf("%d%d%d",&n,&k,&d);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
if(!d){
pii res=mp(0,0);
for(int l=1,r;l<=n;l++){
r=l;while(r<=n&&a[l]==a[r]) ++r;
chkmax(res,mp(r-l,-l));
} printf("%d %d\n",-res.se,-res.se+res.fi-1);
return 0;
} build(1,1,n);pii res;
for(int i=1;i<=n;i++) b[i]=getdiv(a[i],d),c[i]=getmod(a[i],d);
stack<int> stk_mn,stk_mx;stk_mn.push(0);stk_mx.push(0);
for(int i=1,mnl=1;i<=n;i++){//(mx-mn)-(r-l)<=k
if(c[i]!=c[i-1]) chkmax(mnl,i);
chkmax(mnl,pre[b[i]]+1);pre[b[i]]=i;
while(stk_mn.size()>1&&b[i]<b[stk_mn.top()]){
int p=stk_mn.top();stk_mn.pop();
modify(1,stk_mn.top()+1,p,b[p]-b[i]);
// printf("modify %d %d %d\n",stk_mn.top()+1,p,b[p]-b[i]);
} while(stk_mx.size()>1&&b[i]>b[stk_mx.top()]){
int p=stk_mx.top();stk_mx.pop();
modify(1,stk_mx.top()+1,p,-b[p]+b[i]);
// printf("modify %d %d %d\n",stk_mx.top()+1,p,-b[p]+b[i]);
} if(i^1) modify(1,1,i-1,-1)/*,printf("modify %d %d %d\n",1,i-1,-1)*/;
stk_mn.push(i);stk_mx.push(i);
int ps=findleq(1,mnl,i,k);
if(~ps) chkmax(res,mp(i-ps+1,-ps));
} printf("%d %d\n",-res.se,-res.se+res.fi-1);
return 0;
}
Codeforces 407E - k-d-sequence(单调栈+扫描线+线段树)的更多相关文章
- P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...
- 51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线
区间计数 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 80 两个数列 {An} , {Bn} ,请求出Ans, Ans定义如下: Ans:=Σni=1Σnj=i[max{ ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- 【XSY2720】区间第k小 整体二分 可持久化线段树
题目描述 给你你个序列,每次求区间第\(k\)小的数. 本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\). 强制在线. \(n\leq 100000,a_i<n ...
- HDU 3642 - Get The Treasury - [加强版扫描线+线段树]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- 【BZOJ3958】[WF2011]Mummy Madness 二分+扫描线+线段树
[BZOJ3958][WF2011]Mummy Madness Description 在2011年ACM-ICPC World Finals上的一次游览中,你碰到了一个埃及古墓. 不幸的是,你打开了 ...
- HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)
Description Ted has a new house with a huge window. In this big summer, Ted decides to decorate the ...
- 【bzoj4491】我也不知道题目名字是什么 离线扫描线+线段树
题目描述 给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串 输入 第一行n,表示A数组有多少元素接下来一行为n个整数A[i]接下来一个整数Q,表示询问数 ...
- hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积
题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...
随机推荐
- 在hive中使用COALESCE进行空值处理
COALESCE (expression_1, expression_2, ...,expression_n)依次参考各参数表达式,遇到非null值即停止并返回该值.如果所有的表达式都是空值,最终将返 ...
- Less-(38~41) 堆叠注入
首先申明,Less-(38~41)可以采取和Less-(1~4)相同的解法:(一一对应) 然而,他们的漏洞其实更大,我们可以做更多具有破坏性的事情. 代码审计: Less-(38~41): 41的$s ...
- JVM:内存溢出OOM
JVM:内存溢出OOM 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 经典错误 JVM 中常见的两个 OOM 错误 StackoverflowError:栈溢出 ...
- Scrum Meeting 0529
零.说明 日期:2021-5-29 任务:简要汇报七日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 七日内已完成的任务 后两日计划完成的任务 困难 qsy PM&前端 完成后端管 ...
- Noip模拟22 2021.7.21
T1 d 简化题意就是找到相对平均长宽的偏移量较大的矩形给他删掉 可以说是个贪心,按照a,b分别为第一关键字排序 然后假装删去要求的那么多个按a排序的较小的,然后再去b中, 找到 删去的a中的那几个矩 ...
- PCIE学习笔记--TLP Header详解(三)
目录篇地址为:http://blog.chinaaet.com/justlxy/p/5100053481 Completions Completions的TLP Header的格式如下图所示: 这里来 ...
- [转]DDR3基本概念5 - DDR仿真中出现的Memory overflow错误的处理
ERROR: Memory overflow. Write to Address 7000fe with data xxxxxxxxxxxxxxxx4634899aabe03499 will be l ...
- hdu 2473 Junk-Mail Filter(并查集)
题意: N个邮件需要鉴别. 两种操作: 1. M X Y:X和Y是同一种邮件 2.S X:X被误判(意味着X要被它从属的那个集合"踢出去"而所有其它的邮件的关系保持不变) 问最后总 ...
- tcp 三次握手建立连接难点总结
所谓三次握手(Three-way Handshake),是指建立一个TCP连接时,需要客户端和服务器总共发送3个包. 三次握手的目的是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号 ...
- 安装RedHat和Centos后做的15件事情
由于之前的Centos 7不支持无线网络连接,我尝试着将内核升级至4.8还是无效,遂决定换回RedHat 7,目前系统已经安装好,版本是Red Hat Enterprise Linux 7.3,下面是 ...