Zhao S., Liu Z., Lin J., Zhu J. and Han S. Differentiable Augmentation for Data-Efficient GAN Training. NIPS, 2020.

Karras T., Aittala M., Hellsten J., Laine S., Lehtinen J. and Alia T. Training Generative Adversarial Networks with Limited Data. NIPS, 2020.

Augmentation 在分类识别中已经是非常常用的技术了, 但是在GAN中却并不多用, 究其原因主要是:

  1. Augmentation容易泄露导致生成器最后拟合的是变换后的分布;
  2. 技术上, augment之后是否保留梯度(这个其实是我个人的想法, 总觉得augmentation只能施加在图片上, 原来大部分augmentation都可以直接在tensor上实现, 虽然这可能不是现成的).

主要内容

Differentiable Augmentation

添加augmentation有三种策略:

  1. \(T(x)\), 仅对真实样本施加, 显然这种情况会让生成器学到恶心的东西;
  2. \(T(x), T(G(z))\), 对二者都施加, 但仅用于训练判别器;
  3. \(T(x), T(G(z))\), 对二者都施加, 同时训练生成器, 当然这就要求augmentation不破坏梯度.

本文采取的就是第三种策略.

Adaptive Augmentation

这篇文章有一个点我觉得很有意思, 其认为augmentation应当是'invertible'的.

倘若我们对一个生成的图片施加随机的旋转: 0, 90, 180, 270, 那么显然, 最后的生成器就不一定生成正常视角(0)的图片, 这是因为, 不管生成最后变成 0, 90, 180, 270度的概率都是一样的, 生成器没法判断哪一个才是我们想要的是对的.

所以, 这篇文章认为, 对于每一个augmentation应该添加一个概率\(p < 1\), 即按照小于1的概率实施.

虽然代码给出了很多augmentation, 不过最后选择的是比较弱的俩种...

注: Diff_Aug 虽然没有这个概率\(p\), 但是它选择的变换都是满足‘invertible'的.

代码

Diff_Aug

Ada_Aug

Augmentation For GAN的更多相关文章

  1. (转)Awesome GAN for Medical Imaging

    Awesome GAN for Medical Imaging 2018-08-10 09:32:43 This blog is copied from: https://github.com/xin ...

  2. 常见的数据扩充(data augmentation)方法

    G~L~M~R~S 一.data augmentation 常见的数据扩充(data augmentation)方法:文中图片均来自吴恩达教授的deeplearning.ai课程 1.Mirrorin ...

  3. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

  4. 《StackGAN: Text to Photo-realistic Image Synthesis with Stacked GAN》论文笔记

    出处:arxiv 2016 尚未出版 Motivation 根据文字描述来合成相片级真实感的图片是一项极具挑战性的任务.现有的生成手段,往往只能合成大体的目标,而丢失了生动的细节信息.StackGAN ...

  5. 深度学习笔记(十)Augmentation for small object detection(翻译)

    一. abstract 这些年来,目标检测取得了令人瞩目的成就.尽管改进很大,但对于小目标和大目标的检测性能差异还是蛮大的.我们在 MS COCO 数据集上分析了如今一个比较先进的算法,Mask-RC ...

  6. Regularizing Deep Networks with Semantic Data Augmentation

    目录 概 主要内容 代码 Wang Y., Huang G., Song S., Pan X., Xia Y. and Wu C. Regularizing Deep Networks with Se ...

  7. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  8. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  9. 深度学习中的Data Augmentation方法(转)基于keras

    在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...

随机推荐

  1. Spark(十二)【SparkSql中数据读取和保存】

    一. 读取和保存说明 SparkSQL提供了通用的保存数据和数据加载的方式,还提供了专用的方式 读取:通用和专用 保存 保存有四种模式: 默认: error : 输出目录存在就报错 append: 向 ...

  2. Git配置文件与git config命令

    在Git配置文件中配置变量,可以控制Git的外观和操作的各个方面.通过git config命令可以获得和设置配置变量. 一.Git配置文件的位置 这些变量可以被存储在三个不同的位置: 1./etc/g ...

  3. Linux基础命令---ftp

    ftp ftp指令可以用来登录远程ftp服务器. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora.   1.语法       ftp [ ...

  4. ActiveRecord教程

    (一.ActiveRecord基础) ActiveRecord是Rails提供的一个对象关系映射(ORM)层,从这篇开始,我们来了解Active Record的一些基础内容,连接数据库,映射表,访问数 ...

  5. NSURLSession实现文件上传

    7.1 涉及知识点(1)实现文件上传的方法 /* 第一个参数:请求对象 第二个参数:请求体(要上传的文件数据) block回调: NSData:响应体 NSURLResponse:响应头 NSErro ...

  6. 【编程思想】【设计模式】【创建模式creational】建造者模式builder

    Python版 https://github.com/faif/python-patterns/blob/master/creational/builder.py #!/usr/bin/python ...

  7. JavaScript实现数组去重方法

    一.利用ES6 Set去重(ES6中最常用) function unique (arr) { return Array.from(new Set(arr)) } var arr = [1,1,'tru ...

  8. 【Java基础】ArrayList初始化操作

    要用60个零初始化列表,请执行以下操作: List<Integer> list = new ArrayList<Integer>(Collections.nCopies(60, ...

  9. Android CameraX 打开摄像头预览

    目标很简单,用CameraX打开摄像头预览,实时显示在界面上.看看CameraX有没有Google说的那么好用.先按最简单的来,把预览显示出来. 引入依赖 模块gradle的一些配置,使用的Andro ...

  10. Jenkins构建通知

    目录 一.简介 二.推送到gitlab 三.邮件通知 自带配置 Email Extension 四.钉钉通知 五.脚本钉钉通知 六.HTTP请求通知 一.简介 类似于监控报警,jenkins在配置持续 ...