Zhao S., Liu Z., Lin J., Zhu J. and Han S. Differentiable Augmentation for Data-Efficient GAN Training. NIPS, 2020.

Karras T., Aittala M., Hellsten J., Laine S., Lehtinen J. and Alia T. Training Generative Adversarial Networks with Limited Data. NIPS, 2020.

Augmentation 在分类识别中已经是非常常用的技术了, 但是在GAN中却并不多用, 究其原因主要是:

  1. Augmentation容易泄露导致生成器最后拟合的是变换后的分布;
  2. 技术上, augment之后是否保留梯度(这个其实是我个人的想法, 总觉得augmentation只能施加在图片上, 原来大部分augmentation都可以直接在tensor上实现, 虽然这可能不是现成的).

主要内容

Differentiable Augmentation

添加augmentation有三种策略:

  1. \(T(x)\), 仅对真实样本施加, 显然这种情况会让生成器学到恶心的东西;
  2. \(T(x), T(G(z))\), 对二者都施加, 但仅用于训练判别器;
  3. \(T(x), T(G(z))\), 对二者都施加, 同时训练生成器, 当然这就要求augmentation不破坏梯度.

本文采取的就是第三种策略.

Adaptive Augmentation

这篇文章有一个点我觉得很有意思, 其认为augmentation应当是'invertible'的.

倘若我们对一个生成的图片施加随机的旋转: 0, 90, 180, 270, 那么显然, 最后的生成器就不一定生成正常视角(0)的图片, 这是因为, 不管生成最后变成 0, 90, 180, 270度的概率都是一样的, 生成器没法判断哪一个才是我们想要的是对的.

所以, 这篇文章认为, 对于每一个augmentation应该添加一个概率\(p < 1\), 即按照小于1的概率实施.

虽然代码给出了很多augmentation, 不过最后选择的是比较弱的俩种...

注: Diff_Aug 虽然没有这个概率\(p\), 但是它选择的变换都是满足‘invertible'的.

代码

Diff_Aug

Ada_Aug

Augmentation For GAN的更多相关文章

  1. (转)Awesome GAN for Medical Imaging

    Awesome GAN for Medical Imaging 2018-08-10 09:32:43 This blog is copied from: https://github.com/xin ...

  2. 常见的数据扩充(data augmentation)方法

    G~L~M~R~S 一.data augmentation 常见的数据扩充(data augmentation)方法:文中图片均来自吴恩达教授的deeplearning.ai课程 1.Mirrorin ...

  3. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

  4. 《StackGAN: Text to Photo-realistic Image Synthesis with Stacked GAN》论文笔记

    出处:arxiv 2016 尚未出版 Motivation 根据文字描述来合成相片级真实感的图片是一项极具挑战性的任务.现有的生成手段,往往只能合成大体的目标,而丢失了生动的细节信息.StackGAN ...

  5. 深度学习笔记(十)Augmentation for small object detection(翻译)

    一. abstract 这些年来,目标检测取得了令人瞩目的成就.尽管改进很大,但对于小目标和大目标的检测性能差异还是蛮大的.我们在 MS COCO 数据集上分析了如今一个比较先进的算法,Mask-RC ...

  6. Regularizing Deep Networks with Semantic Data Augmentation

    目录 概 主要内容 代码 Wang Y., Huang G., Song S., Pan X., Xia Y. and Wu C. Regularizing Deep Networks with Se ...

  7. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  8. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  9. 深度学习中的Data Augmentation方法(转)基于keras

    在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...

随机推荐

  1. oracle异常处理——ORA-01000:超出打开游标最大数

    oracle异常处理--ORA-01000:超出打开游标最大数https://www.cnblogs.com/zhaosj/p/4309352.htmlhttps://blog.csdn.net/u0 ...

  2. 转 android开发笔记之handler+Runnable的一个巧妙应用

    本文链接:https://blog.csdn.net/hfreeman2008/article/details/12118817 版权 1. 一个有趣Demo: (1)定义一个handler变量 pr ...

  3. Android 基础UI组件(一)

    1.Toast //显示文字 Toast.makeText(this,"Toast显示文本",Toast.LENGTH_SHORT).show(); //显示图片 Toast to ...

  4. CountDownLatch原理

    正如每个Java文档所描述的那样,CountDownLatch是一个同步工具类,它允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行.在Java并发中,countdownlatch的概念是一 ...

  5. jQuery - focusin/focusout/focus/blur事件的区别与不同

    focus与blur事件:不支持冒泡 focusin与focusout:支持冒泡 事件触发顺序: 对于同时支持这4个事件的浏览器,事件执行顺序为focusin(聚焦) > focus > ...

  6. Mybatis通用Mapper介绍和使用

    Mybatis通用Mapper介绍与使用 前言 使用Mybatis的开发者,大多数都会遇到一个问题,就是要写大量的SQL在xml文件中,除了特殊的业务逻辑SQL之外,还有大量结构类似的增删改查SQL. ...

  7. [云原生]Docker - 容器

    目录 Docker容器 启动容器 新建并启动 启动已终止容器 守护态运行容器 终止容器 进入容器 attach命令 exec命令 导出和导入容器 导出容器 导入容器 删除容器 Docker容器 容器是 ...

  8. log4j漏洞的产生原因和解决方案,小白都能看懂!!!!

    核弹级bug Log4j,相信很多人都有所耳闻了,这两天很多读者都在问我关于这个bug的原理等一些问题,今天咱们就专门写一篇文章,一起聊一聊这个核弹级别的bug的产生原理以及怎么防止 产生原因 其实这 ...

  9. ts配置项

    { "compilerOptions": { /* 基本选项 */ "target": "es5", // 指定 ECMAScript 目标 ...

  10. wustctf2020_number_game

    第一次碰到这种类型的题目,特地来记录一下 例行检查就不放了 int的取值范围[-2147482648,2147483647] 网上的解释: 绕过第9行的if即可获取shell,v1是无符号整型,我们输 ...