Augmentation For GAN
概
Augmentation 在分类识别中已经是非常常用的技术了, 但是在GAN中却并不多用, 究其原因主要是:
- Augmentation容易泄露导致生成器最后拟合的是变换后的分布;
- 技术上, augment之后是否保留梯度(这个其实是我个人的想法, 总觉得augmentation只能施加在图片上, 原来大部分augmentation都可以直接在tensor上实现, 虽然这可能不是现成的).
主要内容
Differentiable Augmentation
添加augmentation有三种策略:
- \(T(x)\), 仅对真实样本施加, 显然这种情况会让生成器学到恶心的东西;
- \(T(x), T(G(z))\), 对二者都施加, 但仅用于训练判别器;
- \(T(x), T(G(z))\), 对二者都施加, 同时训练生成器, 当然这就要求augmentation不破坏梯度.
本文采取的就是第三种策略.
Adaptive Augmentation
这篇文章有一个点我觉得很有意思, 其认为augmentation应当是'invertible'的.
倘若我们对一个生成的图片施加随机的旋转: 0, 90, 180, 270, 那么显然, 最后的生成器就不一定生成正常视角(0)的图片, 这是因为, 不管生成最后变成 0, 90, 180, 270度的概率都是一样的, 生成器没法判断哪一个才是我们想要的是对的.
所以, 这篇文章认为, 对于每一个augmentation应该添加一个概率\(p < 1\), 即按照小于1的概率实施.
虽然代码给出了很多augmentation, 不过最后选择的是比较弱的俩种...
注: Diff_Aug 虽然没有这个概率\(p\), 但是它选择的变换都是满足‘invertible'的.
代码
Augmentation For GAN的更多相关文章
- (转)Awesome GAN for Medical Imaging
Awesome GAN for Medical Imaging 2018-08-10 09:32:43 This blog is copied from: https://github.com/xin ...
- 常见的数据扩充(data augmentation)方法
G~L~M~R~S 一.data augmentation 常见的数据扩充(data augmentation)方法:文中图片均来自吴恩达教授的deeplearning.ai课程 1.Mirrorin ...
- [转]GAN论文集
really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...
- 《StackGAN: Text to Photo-realistic Image Synthesis with Stacked GAN》论文笔记
出处:arxiv 2016 尚未出版 Motivation 根据文字描述来合成相片级真实感的图片是一项极具挑战性的任务.现有的生成手段,往往只能合成大体的目标,而丢失了生动的细节信息.StackGAN ...
- 深度学习笔记(十)Augmentation for small object detection(翻译)
一. abstract 这些年来,目标检测取得了令人瞩目的成就.尽管改进很大,但对于小目标和大目标的检测性能差异还是蛮大的.我们在 MS COCO 数据集上分析了如今一个比较先进的算法,Mask-RC ...
- Regularizing Deep Networks with Semantic Data Augmentation
目录 概 主要内容 代码 Wang Y., Huang G., Song S., Pan X., Xia Y. and Wu C. Regularizing Deep Networks with Se ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- 不要怂,就是GAN (生成式对抗网络) (一)
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 深度学习中的Data Augmentation方法(转)基于keras
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...
随机推荐
- Spark(十二)【SparkSql中数据读取和保存】
一. 读取和保存说明 SparkSQL提供了通用的保存数据和数据加载的方式,还提供了专用的方式 读取:通用和专用 保存 保存有四种模式: 默认: error : 输出目录存在就报错 append: 向 ...
- Git配置文件与git config命令
在Git配置文件中配置变量,可以控制Git的外观和操作的各个方面.通过git config命令可以获得和设置配置变量. 一.Git配置文件的位置 这些变量可以被存储在三个不同的位置: 1./etc/g ...
- Linux基础命令---ftp
ftp ftp指令可以用来登录远程ftp服务器. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法 ftp [ ...
- ActiveRecord教程
(一.ActiveRecord基础) ActiveRecord是Rails提供的一个对象关系映射(ORM)层,从这篇开始,我们来了解Active Record的一些基础内容,连接数据库,映射表,访问数 ...
- NSURLSession实现文件上传
7.1 涉及知识点(1)实现文件上传的方法 /* 第一个参数:请求对象 第二个参数:请求体(要上传的文件数据) block回调: NSData:响应体 NSURLResponse:响应头 NSErro ...
- 【编程思想】【设计模式】【创建模式creational】建造者模式builder
Python版 https://github.com/faif/python-patterns/blob/master/creational/builder.py #!/usr/bin/python ...
- JavaScript实现数组去重方法
一.利用ES6 Set去重(ES6中最常用) function unique (arr) { return Array.from(new Set(arr)) } var arr = [1,1,'tru ...
- 【Java基础】ArrayList初始化操作
要用60个零初始化列表,请执行以下操作: List<Integer> list = new ArrayList<Integer>(Collections.nCopies(60, ...
- Android CameraX 打开摄像头预览
目标很简单,用CameraX打开摄像头预览,实时显示在界面上.看看CameraX有没有Google说的那么好用.先按最简单的来,把预览显示出来. 引入依赖 模块gradle的一些配置,使用的Andro ...
- Jenkins构建通知
目录 一.简介 二.推送到gitlab 三.邮件通知 自带配置 Email Extension 四.钉钉通知 五.脚本钉钉通知 六.HTTP请求通知 一.简介 类似于监控报警,jenkins在配置持续 ...