Augmentation For GAN
概
Augmentation 在分类识别中已经是非常常用的技术了, 但是在GAN中却并不多用, 究其原因主要是:
- Augmentation容易泄露导致生成器最后拟合的是变换后的分布;
- 技术上, augment之后是否保留梯度(这个其实是我个人的想法, 总觉得augmentation只能施加在图片上, 原来大部分augmentation都可以直接在tensor上实现, 虽然这可能不是现成的).
主要内容
Differentiable Augmentation
添加augmentation有三种策略:
- \(T(x)\), 仅对真实样本施加, 显然这种情况会让生成器学到恶心的东西;
- \(T(x), T(G(z))\), 对二者都施加, 但仅用于训练判别器;
- \(T(x), T(G(z))\), 对二者都施加, 同时训练生成器, 当然这就要求augmentation不破坏梯度.
本文采取的就是第三种策略.
Adaptive Augmentation
这篇文章有一个点我觉得很有意思, 其认为augmentation应当是'invertible'的.
倘若我们对一个生成的图片施加随机的旋转: 0, 90, 180, 270, 那么显然, 最后的生成器就不一定生成正常视角(0)的图片, 这是因为, 不管生成最后变成 0, 90, 180, 270度的概率都是一样的, 生成器没法判断哪一个才是我们想要的是对的.
所以, 这篇文章认为, 对于每一个augmentation应该添加一个概率\(p < 1\), 即按照小于1的概率实施.
虽然代码给出了很多augmentation, 不过最后选择的是比较弱的俩种...
注: Diff_Aug 虽然没有这个概率\(p\), 但是它选择的变换都是满足‘invertible'的.
代码
Augmentation For GAN的更多相关文章
- (转)Awesome GAN for Medical Imaging
Awesome GAN for Medical Imaging 2018-08-10 09:32:43 This blog is copied from: https://github.com/xin ...
- 常见的数据扩充(data augmentation)方法
G~L~M~R~S 一.data augmentation 常见的数据扩充(data augmentation)方法:文中图片均来自吴恩达教授的deeplearning.ai课程 1.Mirrorin ...
- [转]GAN论文集
really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...
- 《StackGAN: Text to Photo-realistic Image Synthesis with Stacked GAN》论文笔记
出处:arxiv 2016 尚未出版 Motivation 根据文字描述来合成相片级真实感的图片是一项极具挑战性的任务.现有的生成手段,往往只能合成大体的目标,而丢失了生动的细节信息.StackGAN ...
- 深度学习笔记(十)Augmentation for small object detection(翻译)
一. abstract 这些年来,目标检测取得了令人瞩目的成就.尽管改进很大,但对于小目标和大目标的检测性能差异还是蛮大的.我们在 MS COCO 数据集上分析了如今一个比较先进的算法,Mask-RC ...
- Regularizing Deep Networks with Semantic Data Augmentation
目录 概 主要内容 代码 Wang Y., Huang G., Song S., Pan X., Xia Y. and Wu C. Regularizing Deep Networks with Se ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- 不要怂,就是GAN (生成式对抗网络) (一)
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 深度学习中的Data Augmentation方法(转)基于keras
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...
随机推荐
- oracle异常处理——ORA-01000:超出打开游标最大数
oracle异常处理--ORA-01000:超出打开游标最大数https://www.cnblogs.com/zhaosj/p/4309352.htmlhttps://blog.csdn.net/u0 ...
- 转 android开发笔记之handler+Runnable的一个巧妙应用
本文链接:https://blog.csdn.net/hfreeman2008/article/details/12118817 版权 1. 一个有趣Demo: (1)定义一个handler变量 pr ...
- Android 基础UI组件(一)
1.Toast //显示文字 Toast.makeText(this,"Toast显示文本",Toast.LENGTH_SHORT).show(); //显示图片 Toast to ...
- CountDownLatch原理
正如每个Java文档所描述的那样,CountDownLatch是一个同步工具类,它允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行.在Java并发中,countdownlatch的概念是一 ...
- jQuery - focusin/focusout/focus/blur事件的区别与不同
focus与blur事件:不支持冒泡 focusin与focusout:支持冒泡 事件触发顺序: 对于同时支持这4个事件的浏览器,事件执行顺序为focusin(聚焦) > focus > ...
- Mybatis通用Mapper介绍和使用
Mybatis通用Mapper介绍与使用 前言 使用Mybatis的开发者,大多数都会遇到一个问题,就是要写大量的SQL在xml文件中,除了特殊的业务逻辑SQL之外,还有大量结构类似的增删改查SQL. ...
- [云原生]Docker - 容器
目录 Docker容器 启动容器 新建并启动 启动已终止容器 守护态运行容器 终止容器 进入容器 attach命令 exec命令 导出和导入容器 导出容器 导入容器 删除容器 Docker容器 容器是 ...
- log4j漏洞的产生原因和解决方案,小白都能看懂!!!!
核弹级bug Log4j,相信很多人都有所耳闻了,这两天很多读者都在问我关于这个bug的原理等一些问题,今天咱们就专门写一篇文章,一起聊一聊这个核弹级别的bug的产生原理以及怎么防止 产生原因 其实这 ...
- ts配置项
{ "compilerOptions": { /* 基本选项 */ "target": "es5", // 指定 ECMAScript 目标 ...
- wustctf2020_number_game
第一次碰到这种类型的题目,特地来记录一下 例行检查就不放了 int的取值范围[-2147482648,2147483647] 网上的解释: 绕过第9行的if即可获取shell,v1是无符号整型,我们输 ...